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Abstract 

In this study the relatively new method of entropy analysis is used to 

analyze a dataset with 14 961 observations from 29 different cities all over 

the globe. The method can be applied to variables on both nominal and 

ordinal scale and enables the researcher to find complex relationships 

within a dataset. The aim of the study is to explain the practice of entropy 

analysis and evaluate its ability to analyze marketing research data. The 

authors find that the method could be of great use in the area of marketing 

research in the future. 

Keywords: entropy analysis, marketing research, discrete variables, 

explorative research. 
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1 Introduction 

There are many different areas in statistical analysis where discrete variables are present. 

Marketing research for instance, is an area where explorative analysis is common and 

where different discrete categorical variables related to preferences and purchasing 

habits often occur. Many of the established techniques for exploratory analysis, 

exploratory factor analysis for instance, does however analyze continuous variables. In 

addition, techniques developed to analyze discrete variables are often limited to finding 

simple linear relationships.  

A new multivariate technique developed to analyze variables on both nominal and ordinal 

scale is the technique called entropy analysis. It originates in the discipline of information 

theory and is based on the measure of spread named entropy. One of the technique’s 

strong suites is its ability to identify non-linear relationships between variables in a dataset 

and illustrate them in a so called relationship graph. The method enables the researcher 

to identify more complex relationships in a dataset, a feature that makes entropy analysis 

a potential player in the future of research. Using the technique and evaluating its 

application in different research areas is hence important for the future use and 

development of the technique. 

This study aims to apply the entropy analysis technique on the marketing research data of 

the Metropolitan Report collected by the business intelligence firm United Minds and the 

media company Metro International. The study aims to give a general understanding of 

the technique and evaluate its ability to analyze marketing research data.  
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2 Methodology 

 
2.1 Statistical entropy measures 

Imagine a questionnaire with ten questions and assume that all questions have the range 

of 5, meaning they can take five different outcomes. This means that there are 510 

possible response patterns in a ten dimensional distribution. It is not comprehensible nor 

user friendly to present the data as a ten dimensional distribution and consequently, the 

data need to be simplified in some way. How to simplify the data and find which variables 

should be presented is what the method of using entropy is all about. All presented 

methodology in this thesis will be referred to the works by Frank (2011). 

Instead of thinking of the variables as a ten dimensional distribution the method separates 

variables into different groups with strong relationships within the groups and as small 

relationships as possible among the groups. This can be done by using certain statistical 

measures based on entropies. Assume that the structure of the ten variables is 

transformed in to two components with three variables each, one component with two 

variables and two variables that are independent of all the others. There are now five 

independent components of variables. The gain from knowing the structure of the 

variables is that we now can treat the material as two three dimensional, one two 

dimensional and two one dimensional distributions. Doing so enables the distribution over 

the response pattern to be derived from five distributions with a total of only      

           response patterns. This is a more efficient way to present and get an 

overall view of the data than with the original               response patterns.  

The method of entropies could also simplify the data even more than already explained. If 

one variable is found to be explained by other variables and hence can be determined 

from these, the variable is redundant and can be dropped from the analysis. If the two 

variables would explain the third variable in the two components of three variables in the 

example above, this would imply that we can drop the two explained variables from the 

analysis. That would leave 8 variables that still have the ability to give the same 

information as the previous ten. The total response patterns we would be interested in are 

now reduced to            .  

2.1.1 Aggregation 

Another way of simplifying the data that in no way is unique to the method of entropy 

analysis, is aggregating response categories that are similar or hard to distinguish. If the 

response categories are to be aggregated, it is desirable to make the variable uniformly 

distributed as this will make relationships emerge clearer later in the analysis. In the 

previous example it might be possible for each variable to be reduced from having five 

outcomes to having three outcomes. This means that the final response patterns under 

investigation, after variables have been dropped, would have been reduced to      

       outcomes. Thus 33 different response patterns could roughly explain the 

same information as the 9 765 625 possible patterns of the original data. 
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By aggregating response categories one has to take into account that information will be 

lost. This have to, on the other hand, be reflected in the light of that the data can be 

presented in a much easier way. The researcher will have to decide an appropriate 

balance between details and interpretability.  

2.1.2 Entropy properties 

The entropy,  , can be thought of as a measure of spread. The highest value the entropy 

of a certain variable is the logarithm of its range. The entropy will reach its maximum 

when the variable is uniformly distributed and the minimum entropy zero is obtained for a 

variable with only one outcome. This means that a variable with entropy close to its log r 

is close to uniform, a variable with entropy far from log range has few occurring outcomes 

and a variable with entropy zero has only one outcome.  

The entropy measure is most common when dealing with a finite discrete variable on 

ordinal or nominal scale. The entropy can however, still be used for continuous variables 

if transformed into categories. Analysis with entropies does not assume any specific 

distribution for the variables, an assumption that is easily violated in other statistical 

methods. The entropy measure can also be used for all data levels and compare 

variables at different kinds of levels. The entropy also measures all kinds of relationships 

between variables and not only linear ones like correlation methods.  

2.1.3 Univariate entropy 

 
Consider a variable   that has response categories on ordinal scale which reach from 
very good, good, average, bad and very bad. The variable then has a range of five and 
the response alternatives of the variable   are denoted by             corresponding 

to the five alternatives. If   is considered to be a random variable, the calculated 
probability           for each of the outcomes x is approximated by its relative 

frequency = 
  

 
 among the responses from n individuals for        .   

Once the probabilities are computed the univariate entropy is calculated using the 
formula: 

      

 

   

    
 

  
                   

Equation 1 

 

Note that entropies are normally calculated using the logarithm base two. The entropy will 

be non-negative since the inverted probability is > 1 and take values between: 

             Inequality A 

The univariate entropies can first be examined to see if there are any of the variables that 

can be considered a constant or that is uniformly distributed. If any entropy is zero or 

close to zero there is no variability within the variable and can be treated as a constant 

and can therefore be excluded in the analysis. What counts as close to zero is up to the 

researcher to decide. Since the entropy is a measure of spread, one can interpret the 

entropy as the logarithm of the numbers of outcomes that would correspond to a flat 
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distribution. By taking 2 to the power of the entropy, one can see how many of the actual 

outcomes that is used within the variable. Another measure is the relative entropy which 

is a measure extended from Inequality A: 

                     
  

       
            

Equation 2 

 

        Inequality B 

The relative entropy takes the value zero if the variable is a constant and the value 1 if the 

variable is uniformly distributed. Hence the relative entropy gives the same information as 

the Inequality A but does so in a standardized manner. The relative entropy can be useful 

to identify which variables that could be dropped from the analysis at this early stage of 

the analysis. If the value for a variable is close to zero, the variable can be dropped. It is 

however, always a good idea to refer to the absolute value of the univariate entropy 

before doing so. It is desirable to have a variable that is uniformly distributed or close to 

uniformly distributed since it will give clearer relationships between variables later in the 

analysis. The relative entropy can also be computed for higher ordered entropies to get 

an idea of how big part of the outcome space that is being used.  

2.1.4 Bivariate entropy 

Consider two variables X and Y with outcomes          and          . The 

bivariate entropy is given by the formula: 

                
 

    

 

   

 

   

                Equation 3 

The bivariate entropy can also be illustrated using an example. Consider two 

dichotomous variables   and   both that take the values 0 and 1. Since the variables 
only can take two values     and    , the sample space for the bivariate entropy 
is      . The table shows the numbers      of individuals with response     and 

   , for        and       . 

 

The relative frequencies for the joint distribution between   and   are used for estimating 

the probabilities 
    

 
     , which is used for calculating the bivariate entropy     . The 

univariate entropies    and    can be calculated using the frequencies in the 

corresponding marginal.  
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The bivariate entropy satisfies the inequalities: 

              Inequality C 

With equality to the left if and only if   is explained by         and equality to the 

right if and only if   and   is independent     .  

2.1.5 Trivariate and higher order entropies 

Trivariate, or higher order entropies, are computed in the same way as the bivariate. 

Consider three variables  ,   and   that each has the corresponding range       where 

the range is denoted by                 and        . 

The formula for the trivariate entropy is: 

                      
 

      
 

 

 

 

 

 

  

                   
Equation 4 

 

                    Inequality D 

 

With equality to the left if and only if   is explained by the pair      ,           and 

equality to the right if and only if the pair       is independent of  ,          . 

2.2 Multivariate entropy analysis 

Entropy analysis becomes as most useful in multivariate analysis. Consider m 
variables          where variable    has range    for        . If 
             are three different variables from a set of   variables and         

then the univariate entropy is denoted   , the bivariate entropy     and the trivariate as 

      , and notations is continued in the same manner for higher order entropies. Also 

note that      is the same as    and      is the same as     .  

2.2.1 Entropy matrix 

The entropy matrix is the basis for all further analysis and most information for future 
analysis will be derived from it. The entropy matrix is a symmetric matrix since      is the 

same as     . The matrix shows the univariate entropies in the diagonals and the 

bivariate entropies in the off diagonals. The entropy matrix is ordered to have the variable 
with highest entropy first and the rest in descending order. This is done to get an easier 
overview which variables that might explain another later in the analysis.  

If there is m variables in the dataset there will be m univariate entropies in the diagonals 

and  
 
 
  bivaraite entropies in the off diagonals. Once the entropy matrix is computed a 

more extensive analysis can be performed. 
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2.2.2 Joint entropy and dependencies 

To visualize which variables that share a relationship between each other the joint 

entropy will be used and a joint entropy matrix will be formulated. The joint entropy is 

derived from the inequality            that corresponds to the right side of 

Inequality C. If the difference is taken of the inequality a measure of association between 

the variables is obtained. Hence the formula for calculating the joint entropy is: 

                Equation 5 

                   Inequality E 

The joint entropy will take values between zero and the smaller of the two univariate 

entropies. If it assumes the value zero, there is independence between the variables     
and   . If the joint entropy assumes the             value this means that      

           and            and one variable is a function of the other variable as 

explained by Inequality C.  

The joint entropies are presented into the joint entropy matrix which also is a symmetrical 

matrix with univariate entropies in the diagonals and the joint entropy between the 

variables in the off diagonals. The joint entropy matrix gives a quick overview of which 

variables share relationships and which variables are independent from each other.  

2.3.3 J-relationship graph 

From the J-matrix, it can now be illustrated visually which variables that share 

relationships with other variables, by constructing a J-relationship graph. By choosing a 

convenient critical value of J, variable pairs that have a J-value larger than the critical 

value, are plotted with lines between each other to illustrate their relationship. This will 

give a map that shows which variables that should be further analyzed. Choosing the 

critical value for J to use is up to researcher. The ideal case is when clear components 

appear and all variables within each group are connected together. Each component 

should preferably consist of quite few variables.  

If the value of J is very small many relationships between the variables is also small and 

the components usually grow very big. With decreasing J-value the components grow 

larger and larger and when J equals zero, all variables are connected together. As stated 

earlier, the ideal case is a set of small and isolated components containing strong 

relationships. This is obviously not always the case and what critical J-value to choose 

depends on the structure of the groups that appear. A tool in choosing the critical J-value 

can be found by creating a histogram for all J-values in the joint entropy matrix. The 

histogram might reveal if there is any gap between two values that would indicate a 

natural critical J-value.   

When the critical value of J is to be determined, one should keep in mind that variables 

can be explained from other variables. If a variable can be explained from other variables 

it might be dropped from further analysis and the structure of the J-relationship graph is 

thereby changed. A component may for instance, be split to two smaller components if a 

variable that connects these components can be dropped. Examining functional 
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relationships and determining the critical value of J is a simultaneous process where both 

processes benefit from each other. 

2.3.4 Functional relationships 

To get a measure of influence for Hi,j on Hi there is two different matrices that can be 

used, both derived from the entropy matrix. They present the same information but the 

difference is that one presents it in absolute values and the other in relative values. 

Consider the left side of inequality C again: 

 

        

If the inequality is equal it means that Xi is a function of Xj. If equal, the difference 

between them are zero and the ratio will be one. This gives the two different formulas for 

finding the influence among the variables. 

                   Equation 6.1 

And   
 

     
  

    
 

Equation 6.2 

 

Which share the attributes of: 

  

                Inequality D.1 

          takes the value zero for functional dependency  

          

 

Inequality D.2 

     assumes the value 1 if    explains   , meaning,    is a function of Xi        . 

With two univariate entropies for every bivariate entropy       
  

    
       

  

    
  there 

are two A-values for each variable pair and       are not the same as     . The first 

variable in the notation for every A-value is hence the variable explaining the other. The 
values are to be presented in the A-matrix. The A-matrix will not be symmetric and it has 
to be examined for the highest/lowest values on the matrix at the whole. If a high/low 
value is found the other part of the pair should be examined as well. This gives a clue if 
   explains   , or if    explains    or if the explanation is equally strong in both 

directions suggesting they have a mutual functional relationship. Since the A-values give 
directional functional relationships the direction can be included in the J-relationship 
graph, which will be of help in further analysis. If the A-value is 1 or close to 1 the variable 
explained can be seen as redundant.  
 
Note that if the matrix is computed using the absolute values of Equation 6.1 Values close 
to zero indicate that a functional relationship exists compared to using the relative 
measure where a value close to one indicate functional relationship. 
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2.3.5 Trivariate entropy analysis 

For trivariate entropy analysis the methodology is very similar to the methodology of the 
bivariate entropies. Because of the extra variable added in the equation, there are more 

relationships to be examined. There are a total of   
 
  trivariate entropies in the whole 

dataset and this quickly makes the analysis very time consuming if all trivariate sets were 
to be analyzed. Therefore the J-relationship graph could be consulted to give a hint of 
which variables to further examine. If three variables for example are linked together, 
there is some form of relationship between them and they should therefore be further 
analyzed. If the univariate and bivariate entropies can explain the data there is no need 
for trivariate or higher order entropies. Another reason for not calculating trivariate, and 
higher order entropies, may be the limitation of the observations. If three variables each 

have three different outcomes there are       different outcomes. A rule of thumb is 
that there should be at least 5 possible observations for each outcome. In this case there 
would have to be at least           observations total. This can quickly decrease 
the possibility of higher order entropy research especially if there are variables with a vast 
number of outcomes. 

Each identified trivariate relationship generates nine inequalities to analyze. 

            eq if                   
 
 
  Inequality E.1 

The inequalities of E.1 examines whether any of the two variables explains the third. 

Hence it is a trivariate A-value. The difference, or ratio, of the inequality is examined in 

the same manner as with the bivariate A-values to see if any functional relationships are 

present. It is just an expanded version of the           presented by Equation 6.1 or the ratio 

measure of Equation 6.2.  

               eq if                    
 
 
  Inequality E.2 

Inequalities E.2 can be thought of as a trivariate J-value,         , which measures the 

degree of association between the pair         on      . The difference equals the 

magnitude of the relationship between the two variables in the variable pair and the third 
variable. If the difference is zero they are independent. 

                     eq if                   
 
 
   

 

Inequality E.3 

Inequality E.3 measures the conditional structure between the variables. The set of 

variables that best explains the conditional structure assumes a difference close to zero. 

The measure can be thought of as a J-value for conditional structures,        . 

2.3.6 Tetravariate and higher order entropies 

Tetravariate and higher ordered entropies are calculated in the same manner as with bi- 

and trivariate entropies. There will be   
 
  possible combinations of tetravariate entropies 

in the data set and each of them can be analyzed by 29 different formulas. As higher 
order relationships are examined the complexity of the analysis increases as well. The 
analysis examines the same relationships as the nine formulas presented for the trivariate 
entropies (Inequality E.1-E.3) but the inequalities have become 29 instead of 9 because 
of the extra variable.  
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                eq if                      
 
 
  Inequality D.1 

                    eq if                         
 
 
  Inequality D.2 

                   eq if                          
 
 
 
 

 
  
 
  Inequality D.3 

                         eq if                        
 
 
   

 
   Inequality D.4 

                              eq if                       
 
 
   

 
  Inequality D.5 

There is no given stop for how far the researcher can go in analyzing higher ordered 
entropies. What determines when there is no matter searching for relationships in higher 
order entropies depends on different factors. If bi- and trivariate entropies can explain the 
data, there is no idea to go for higher order entropy in the analysis. There might also be 
restrictions from the sample size. Since there should roughly be at least five possible 
observations for each outcome this criteria quickly gets violated if sample size is small 
and high order entropies are calculated.  

The researcher should also take into account the analysis burden for high order 
entropies. When pentavariate entropies are examined the analysis has been reduced to 
only check for functional relationships and independence and analysis for conditional 

independence have been dropped for simplicity reasons. This means that there are   
 
  

possible combinations of pentavariate entropies and 10 calculations for each set, with 
analysis performed for functional dependencies and for independence, equivalent to 
inequalities D.1 and D.2.  
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3 Application 

3.1 The data 

Data used for analysis are contributed by the business intelligence firm United Minds. 

They were collected the year 2011 in collaboration with the media company Metro 

International and were used to create The Metropolitan Report, a magazine with the 

purpose of helping businesses understand urban consumers around the world. The 

survey investigated the lifestyles, opinions, values and habits of urban citizens. Data were 

collected through an online survey in 29 large cities worldwide and Metro International 

provided the panelists. The sample contained 14 961 respondents with approximately 500 

respondents in each city. Some of the cities included were Beijing, Montreal, Paris, 

Sydney and Copenhagen.  

The respondents were self-recruited and the sample is hence not random. This limits the 

extent to which conclusions from the analysis can be drawn on the population. The main 

purpose of the study is however not to make inference but to give a general 

understanding of the technique and evaluate its ability to analyze marketing research 

data. 

3.1.1 Variables 

The total number of variables in the dataset was originally 261. In order to illustrate the 

entropy method, a reduced set of variables was considered. In the process of selecting 

variables, all multiple-select questions were first removed together with variables with 

missing observations. All variables in the survey were part of question blocks in which all 

questions aimed to explore a certain aspect. All questions belonging to the same block 

were answered sequentially and had the same range and set of answer alternatives. In 

order to make the analysis more comprehensible, the variables used should preferably 

belong to the same blocks. For this reason, question blocks that earlier contained 

variables with missing observations had to be removed from the dataset.  

The remaining number of question blocks was 10 with a total of 97 variables. Each block 

examined different types of aspects such as life satisfaction, attitudes towards cosmetic 

surgery, cultural habits, media habits, use of technology and reading habits regarding the 

Metro newspaper. To limit the extent of the analysis, the 4 blocks that presumably would 

give the best relationships were selected. The question blocks chosen were (1) the basic 

demographic background variables, (2) life satisfaction, (3) work related opinions and 

habits and (4) cultural habits. The selection process had limited the number of variables 

to 30, which is a practical and comprehensible amount for the analysis. 

3.1.2 Aggregation 

The variables did originally have a variety of ranges from 2 to 7 (with an exception for the 
variable city with a range of 29). The aggregation procedure was conducted on the basis 
of the frequency distribution, the underlying logic of the answer alternatives and the 
homogeneity of answers alternatives within the question blocks. The answers with a low 
frequency were to be merged together to create bigger representation within the 
categories. In doing so however, the underlying logic of the categories were not to conflict 
with each other. The question “how often do you go to the cinema?” for instance, had 
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categories ranging from “every day” to “less often than once every year”. The answers 
“every day” and “less often than once every year” could not be merged in this case since 
the underlying logic of the answers was conflicting.  

 

Table 3.1, Variable list, Aggregated and selected variables. 

In addition, the aggregation process should also aim to maintain the homogeneity of 
answer alternatives within the question blocks and all the variables in one block should 
ideally have the same set of answer alternatives. An exception was the block containing 
background variables, where it was not possible. The process of finding new sets of 
answer alternatives are more directed to finding the ones suiting the question blocks 

Name Questions/Statement Answser alternative

Y1 Which city do you live in? {1 to 29 - 29 Cities }

Y2 I often socialize with my colleagues off work {1 - Disagree, 2 - Neutral, 3 - Agree}

Y3
My salary is the most important measure of 

success in my career
{1 - Disagree, 2 - Neutral, 3 - Agree}

Y4
I often work somewhere other than my 

office/workplace
{1 - Disagree, 2 - Neutral, 3 - Agree}

Y5 I often work outside my actual working hours {1 - Disagree, 2 - Neutral, 3 - Agree}

Y6 Go to a pub or bar
{1 - At least once a month, 2 - Between once a 

month and once a year, 3 - Less often}

Y7 Go to a sports event
{1 - At least once a month, 2 - Between once a 

month and once a year, 3 - Less often}

Y8 Your career/work { 1 - Dissatisfied, 2 - Neutral, 3 - Satisfied}

Y9 Your appearance/body { 1 - Dissatisfied, 2 - Neutral, 3 - Satisfied}

Y10
Go to theatres, art galleries or other cultural 

institutions

{1 - At least once a month, 2 - Between once a 

month and once a year, 3 - Less often}

Y11 I feel I have a good work/life balance {1 - Disagree, 2 - Neutral, 3 - Agree}

Y12 Go to a night club
{1 - At least once a month, 2 - Between once a 

month and once a year, 3 - Less often}

Y13 Have breakfast on the go
{1 - At least once a month, 2 - Between once a 

month and once a year, 3 - Less often}

Y14 Go to the cinema
{1 - At least once a month, 2 - Between once a 

month and once a year, 3 - Less often}

Y15 Go to a music concert
{1 - At least once a month, 2 - Between once a 

month and once a year, 3 - Less often}

Y16 Your health { 1 - Dissatisfied, 2 - Neutral, 3 - Satisfied}

Y17
Spend time in a park or public garden (in 

season)

{1 - At least once a month, 2 - Between once a 

month and once a year, 3 - Less often}

Y18 Your life as a whole { 1 - Dissatisfied, 2 - Neutral, 3 - Satisfied}

Y19
I always keep an eye open for new 

job/educational opportunities
{1 - Disagree, 2 - Neutral, 3 - Agree}

Y20 Go to a fast food restaurant
{1 - At least once a month, 2 - Between once a 

month and once a year, 3 - Less often}

Y21
My work is a part of who I am, not just a way 

to make money
{1 - Disagree, 2 - Neutral, 3 - Agree}

Y22 Have dinner at a restaurant
{1 - At least once a month, 2 - Between once a 

month and once a year, 3 - Less often}

Y23 Visit a café or coffee shop
{1 - At least once a month, 2 - Between once a 

month and once a year, 3 - Less often}

Y24 Go shopping (not groceries)
{1 - At least once a month, 2 - Between once a 

month and once a year, 3 - Less often}

Y25 Gender {1 - Female, 2 - Male}

Y26 Age {1 - 18-34, 2 - 35-49}

Y27 Kids in household {1 - Kids, 2 - No kids}

Y28 I believe formal education is important to {1 - Disagree, 2 - Neutral, 3 - Agree}

Y29 Marital status {1 - Single, 2- Not single}
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rather than the individual questions. After the aggregation process was completed, all 
variables had range 3 except for the four background variables with range 2 and the 
variable city that still had range 29. 

The frequency distribution of the variable work status had very little variation and the 

majority of the respondents had answered the work status Employed. Therefore this 

variable was excluded from further analysis. The variables remaining after the selection- 

and aggregation process is presented together with their range in Table 3.1. 

3.1.3 Calculating entropies 

Software used in performing the entropy analysis is SAS, SPSS and Microsoft Excel. The 

dataset was delivered to the authors in the form of a SPSS-file and the authors also had 

experience of working with SPSS. Hence, the preceding process of selecting variables 

and aggregating answer alternatives have mainly been performed in SPSS. In calculating 

the entropies, SAS has been used.  After calculating the entropies most of the analysis 

has been executed in Excel.  

3.2 The Analysis process 

3.2.1 Entropy matrix 

Initially, the univariate entropies were calculated and sorted based on their size and 

renamed from Y1 to Y29, hence,            . The bivariate entropies were 

then calculated and the entropy matrix was created. The entropy matrix, presented in 

Table 3.2, is the foundation that most analysis starts from and is presented below. 

 

Table 3.2, Entropy matrix, or H-matrix, rounded to integer per cent. 

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y16 Y17 Y18 Y19 Y2 0 Y2 1 Y2 2 Y2 3 Y2 4 Y2 5 Y2 6 Y2 7 Y2 8 Y2 9

Y1 486

Y2 636 158

Y3 638 314 158

Y4 638 310 313 157

Y5 637 308 311 293 155

Y6 632 308 312 310 308 154

Y7 634 309 310 308 307 303 153

Y8 635 309 309 308 307 307 305 153

Y9 634 308 309 308 306 305 304 297 152

Y10 632 306 308 306 304 299 299 302 301 151

Y11 631 303 305 304 302 303 301 290 297 299 149

Y12 625 300 303 301 300 277 293 298 296 291 294 146

Y13 623 300 301 299 297 296 294 296 295 293 292 286 144

Y14 623 299 301 299 298 293 291 295 294 281 291 283 285 143

Y15 623 296 298 295 294 286 283 292 291 272 288 276 281 274 140

Y16 621 295 296 295 293 292 291 284 273 289 283 284 282 281 278 138

Y17 615 291 292 290 289 287 285 287 285 278 283 278 276 275 270 273 135

Y18 616 290 291 290 288 288 287 267 271 283 273 279 277 276 273 258 267 134

Y19 615 288 290 286 285 287 286 286 284 283 280 278 276 276 273 271 267 266 133

Y2 0 612 290 290 289 288 286 284 285 284 283 281 277 272 273 272 271 267 267 266 133

Y2 1 615 286 288 286 284 286 285 277 282 282 275 278 276 275 272 269 266 263 263 265 132

Y2 2 607 288 289 288 287 280 282 284 283 278 279 273 274 267 268 270 266 265 265 258 264 132

Y2 3 605 283 286 284 282 271 279 280 279 272 276 267 268 265 263 266 259 261 260 258 259 252 128

Y2 4 587 262 262 261 259 258 257 257 256 253 253 249 248 245 243 243 238 238 238 236 237 234 230 105

Y2 5 585 258 257 256 254 253 250 253 251 251 249 245 244 243 240 238 234 234 233 233 232 232 228 204 100

Y2 6 585 257 258 256 255 253 253 253 251 251 249 243 243 242 240 238 234 234 233 232 232 232 228 205 200 100

Y2 7 582 257 257 255 254 252 252 251 251 250 248 244 242 242 239 237 233 232 232 232 231 231 227 203 199 194 99

Y2 8 577 252 253 252 250 250 249 248 247 247 243 242 240 239 236 234 230 229 227 229 225 228 224 201 196 196 195 96

Y2 9 573 248 248 246 244 243 243 242 241 240 238 235 234 233 230 228 224 222 223 223 222 222 218 194 190 185 178 186 90
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The matrix contains 29 univariate entropies and    
 
      bivariate entropies. The 

values in the H-matrix represent the bivariate entropies with the univariate entropy on the 
diagonals. From the entropy matrix the J-matrix, using Equation 5, is easily calculated 
which is the next step in the analysis. 

3.2.2 J-matrix 

The J-matrix presents the J-values between two variables. The diagonal values display 

the univariate entropy just as the entropy matrix does and are hence not displayed. As the 

J-value is a sort of measure of association between variables, high or low values are of 

interest at since this indicates that variables share strong relationships or are 

independent. Note that J-value does not give any information about the nature of the 

relationship, only that it is present or not. The matrix is presented with values in integer 

percent, which is sufficient accuracy in this case. The J-values are calculated from the 

original H-matrix and the J-values have then been rounded down, some values are 

consequently not consistent between the H- and the J-matrix. 

 

Table 3.3, Joint entropy matrix, or J-matrix, rounded to integer percent 

As can be seen in the J-matrix, the strongest relationship is found between variables Y6 

and Y12 with the J-value of 23 %. The lowest J-value is found between variables Y26 and 

Y18 implying that these variables are independent from each other. The J-matrix is used 

for creating the J-relationship graph, which presents the structure of the variables and will 

work as an aid in the future analysis.  

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 Y15 Y16 Y17 Y18 Y19 Y20 Y21 Y22 Y23 Y24 Y25 Y26 Y27 Y28

Y2 7

Y3 5 1

Y4 3 4 1

Y5 3 4 1 18

Y6 7 3 0 0 0

Y7 5 2 0 1 0 4

Y8 2 1 1 1 0 0 0

Y9 2 1 0 0 0 0 0 7

Y10 3 2 0 1 1 5 5 1 1

Y11 3 3 2 1 1 0 0 11 3 0

Y12 6 4 0 1 0 23 6 0 1 5 0

Y13 6 1 0 1 1 1 2 0 0 1 0 3

Y14 5 2 0 0 0 4 5 0 0 12 0 6 2

Y15 3 2 0 1 0 8 9 0 0 19 0 9 2 8

Y16 3 1 0 0 0 0 0 7 17 0 4 0 0 0 0

Y17 5 1 0 0 0 2 3 0 0 6 0 2 2 3 4 0

Y18 3 1 0 0 0 0 0 19 13 1 9 0 0 0 1 14 0

Y19 3 3 1 4 2 0 0 0 1 1 1 0 0 1 0 1 0 0

Y20 6 1 1 0 0 1 2 0 0 0 0 1 4 3 0 0 0 0 0

Y21 3 3 2 2 3 0 0 8 1 1 6 0 0 0 0 1 0 3 2 0

Y22 11 2 0 0 0 6 3 1 0 5 1 4 2 8 4 0 1 1 0 6 0

Y23 8 3 0 1 1 11 3 0 0 6 0 6 3 6 5 0 3 0 1 3 1 8

Y24 3 0 0 0 0 1 1 0 0 2 0 1 0 2 1 0 1 0 0 2 0 3 2

Y25 0 0 0 1 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Y26 0 0 0 0 0 1 0 0 0 0 0 3 0 1 0 0 0 0 0 0 0 0 0 0 0

Y27 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

Y28 5 1 1 1 1 0 0 0 0 0 2 0 0 0 0 1 0 1 2 0 3 0 0 0 0 0 0

Y29 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 4 10 0



19 

3.2.3 Critical J-value 

When the J-relationship graph is created, a critical J-value must be determined. In 

choosing the critical J-value, the frequency distribution histogram could be used. The J-

values in the dataset are distributed as follow:  

 

Table 3.4, J-value frequency histogram 

The histogram gives some important information. For example are there 226 relationships 

with J-value smaller than 1 in the dataset meaning there are 226 variable pairs with 

variables that are independent or close to independent from each other. A clear cut in the 

histogram could indicate a good critical J-value. The histogram for the data does not 

however give a clear indication for a good critical value but suggests that it might lie 

somewhere between 6 and 9 %. The J-relationship graph will have to be plotted for 

different critical J-values to see which one that seems to explain the data best. 

3.2.4 J-relationship graph 

From the J-matrix, the J-relationship graph is created with variables shown as vertices 

with the variable name inside. Relationships between variables are then illustrated with 

lines between the vertices that are related to each other. The J-relationship graph 

visualizes the structure in the data and clusters the variables related to each other into 

components. The critical J-value is chosen so that it generates the best J-relationship 

graph and different J-values are hence tested. The J-relationship graphs for J-values 6 to 

9 are presented in Figure 3.1 to 3.4. The relationships added at each J-value are 

illustrated with dotted lines. 
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Figure 3.1, Relationship graph for J ≥ 9 

 

Figure 3.2, Relationship graph for J ≥ 8 



21 

 

 Figure 3.3, Relationship graph for J ≥ 7 

 

Figure 3.4, Relationship graph J ≥ 6 
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The number of relationships entered for additional values on J can also be viewed in 

Table 3.5. The aim is to get strong relationships within the components without adding 

relationships with new variables or having the components interconnect. It is also 

preferable not to get too big components as the purpose is to simplify the data. It is 

therefore better to choose a model with two components with two variables in each that 

have strong relationships, than one component with four variables that have weak 

relationships. As can be seen in Figure 3.1 (J≥9) the relationships within the components 

are quite strong and the number of variables within the components is also quite small. In 

Figure 3.2 (J≥8), one can see that relationships between the components start to emerge 

and in Figure 3.3 (J≥7) and 3.4 (J≥6) the components grow even larger in size. 

Consequently, the critical J-value selected is ≥9.  

 

Table 3.5, Added relationships for each J-value 

The data have now already been greatly simplified since each component can be treated 

individually compared to a 29 dimensional distribution as before. The J-relationship graph 

will help determine which variables that should be analyzed for higher order relationships. 

For example, the component containing Y8, Y9, Y11, Y16 and Y18 shows potential for 

having relationships when higher ordered entropies are calculated. One can see that Y8, 

Y9, Y11 and Y16 all share strong relationships with Y18 and this implies that these 

variables may be a good start for further analysis.   

3.3 Functional relationships 

The information provided by the J-relationship graph shows which variables that could 

share functional relationships. The A-matrix for these variables indicates that there are in 

general weak functional relationships between the variables, with an exception for Y1 and 
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Y22, where the A-values for          and         . This tells us that there is a 

functional relationship from Y1 to Y22 where Y22 is explained by Y1 from having the 

lower A-value. Since Y22 is explained by Y1, Y22 could be considered redundant. 

 

Table 3.6, A-matrix for dependent variables 

3.3.1 Bivariate functional relationships 

The functional relationships between variables can be examined using frequency tables. 
The tables would show a dominating value in the cells for each row of the explanatory 
variable explaining how one variable explains the other. This can be seen in the bivariate 
frequency distribution for variables Y1 and Y22 in Table 3.7 where distribution reveals a 
determining pattern between the variables.  

 

 

 

 

 

Y1 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y14 Y15 Y16 Y18 Y22 Y23 Y27 Y29

Y1 25 24 24 24 24 24 24 24 23 23 22 22 22 22 21 17 16

Y4 76 53 50 50 50 49 49 49 48 48 47 47 46 46 45 39 36

Y5 76 53 50 50 50 50 49 49 49 48 48 47 46 46 45 39 37

Y6 77 51 50 51 50 50 50 49 53 49 49 47 46 47 47 39 37

Y7 77 51 50 51 50 50 50 49 50 49 49 48 47 47 46 39 37

Y8 76 51 50 50 50 51 50 51 49 49 48 49 50 47 46 39 37

Y9 77 51 51 50 50 51 50 50 49 49 48 51 49 47 46 40 37

Y10 77 51 51 51 51 50 50 50 50 51 52 48 47 48 47 40 37

Y11 77 52 51 51 51 53 51 50 50 49 49 49 49 47 46 40 38

Y12 78 52 52 56 52 51 51 52 51 51 51 49 48 48 48 41 38

Y14 78 52 52 53 53 52 52 54 51 52 51 49 48 49 48 41 39

Y15 78 53 53 54 54 52 52 55 52 53 52 50 49 49 49 41 39

Y16 78 53 53 53 53 54 56 52 53 51 51 50 52 49 48 42 39

Y18 79 54 54 54 54 57 56 53 54 52 52 51 54 50 49 43 40

Y22 80 54 54 55 54 54 54 54 53 53 54 52 51 51 51 43 40

Y23 80 55 55 57 55 54 54 55 54 55 54 53 52 51 53 44 41

Y27 83 61 61 61 61 61 60 60 60 60 59 59 58 58 57 56 50

Y29 85 64 63 63 63 63 63 63 62 62 62 61 61 60 60 59 56
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Table 3.7, Bivariate frequency distribution for Y1 and Y22 

3.3.2 Higher order functional relationships 

The previous example examined the strongest functional bivariate relation found in the 

data. If no fully functional relations have been found between two variables one can 

analyze the trivariate, or higher, relationships that exists. The J-relationship graph is used 

to determine which variables that might share higher ordered functional relationships. 

One of the strongest trivariate functional relationships found in the data was the degree of 

explanation (Y8,Y9) had on Y18. The frequency distribution for this relationship is shown 

in Table 3.8.  

The A-value for the degree of explanation on Y18 from the pair (Y8, Y9) is 74 %. The pair 

(Y8,Y16) has an almost equally strong relationship on Y18 as the pair (Y8,Y9) which 

1 2 3

Total 

frequency

1 63% 4% 33% 514

2 64% 7% 29% 513

3 92% 2% 6% 500

4 48% 11% 41% 508

5 23% 30% 47% 506

6 62% 6% 32% 447

7 29% 11% 60% 507

8 88% 2% 10% 521

9 60% 9% 31% 504

10 73% 6% 22% 506

11 64% 5% 31% 519

12 57% 9% 33% 502

13 64% 7% 28% 503

14 61% 7% 31% 518

15 73% 4% 24% 506

16 29% 32% 38% 570

17 73% 6% 22% 501

18 61% 7% 32% 533

19 31% 20% 49% 503

20 39% 7% 54% 622

21 63% 5% 32% 512

22 65% 9% 26% 511

23 59% 10% 31% 459

24 56% 6% 39% 502

25 47% 10% 43% 502

26 43% 10% 47% 533

27 26% 28% 46% 527

28 63% 7% 30% 516

29 69% 3% 27% 596

Y22

Frequency distribution for Y1 and Y22

Y1 

Row %
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indicates that Y16 might be included for a higher ordered relationship analysis on Y18. 

Hence, the three variables Y8, Y9, Y16 probably explain Y18 even better. 

 

Table 3.8, Trivariate frequency distribution for Y8, Y9 and Y18 

3.3.3 Independent variables 

In addition to the five multivariable components, many components contain only one 

variable and are independent or approximately independent from the other variables. 

These variables, illustrated in Figure 3.1, have no relationships with other variables when 

the critical J-value is 9. One can further examine the independence between variables 

using the frequency table were no value should be dominating for each row if the 

variables share no relationship. 

3.3.4 Variable independence 

In Table 3.9 the bivariate frequency table between the two variables Y18 and Y26 is 

shown. The J-value for this pair is 0 and one can also see in the relationship graph in 

Figure 3.1 that there is no relationship among these variables. In the Table 3.9, the row 

percentage between the answer alternatives are almost equal indicating no relationship 

present, confirming the independence in the J-relationship graph to be accurate.  

1 2 3 Total

Frequency 782 358 206 1346

Row % 58% 27% 15%

Frequency 352 463 334 1149

Row % 31% 40% 29%

Frequency 183 310 470 963

Row % 19% 32% 49%

Frequency 235 365 306 906

Row % 26% 40% 34%

Frequency 182 1021 768 1971

Row % 9% 52% 39%

Frequency 89 418 1209 1716

Row % 5% 24% 70%

Frequency 127 221 538 886

Row % 14% 25% 61%

Frequency 80 348 1392 1820

Row % 4% 19% 76%

Frequency 60 301 3843 4204

Row % 1% 7% 91%

Total Frequency 2092 3808 9070 14969

Trivariate frequency distribution for Y8, Y9 and Y18

Y8, Y9

Y18

1 , 1

3 , 2

3 , 3

1 , 2

1 , 3

2 , 1

2 , 2

2 , 3

3 , 1
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Table 3.9, Bivariate frequency distribution for Y18 and Y26 

If a model is good, variables in different components should have no or a relationship 

between each other. Table 3.10 shows the bivariate frequency table of variables Y6 and 

Y8, two variables that are part of different components and therefore should share no or a 

very weak relationship.  

 

Table 3.10, Bivariate frequency distribution for Y6 and Y8  

3.3.5 Conditional independence 

The conditional structure in the components is examined by analyzing the trivariate 

entropies. If the value attained from using Inequality E.3 is close to zero, there is a 

conditional independence within the triad. By knowing the conditional structure the data 

can be further simplified and easier interpreted. 

 

 

 

 

 

1 2 Total

Frequency 1061 1029 2090

Row % 51% 49%

Frequency 1937 1868 3805

Row % 51% 49%

Frequency 4608 4458 9066

Row % 51% 49%

Total Frequency 7606 7355 14961

DF Value Prob

2 0,012 0,994

0,0009

Statistic

Chi-Square

Contingency Coefficient

3

Y18

Bivariate frequency distribution for Y18 and Y26

Y26

1

2

1 2 3 Total

Frequency 1484 2001 3191 6676

Row % 22% 30% 48%

Frequency 934 1218 1578 3730

Row % 25% 33% 42%

Frequency 1040 1374 2141 4555

Row % 23% 30% 47%

Total Frequency 3458 4593 6910 14961

DF Value Prob

4 31,1966 <,0001

0.0456

Y8

Y6

Bivariate frequncy distribution for Y6 and Y8

1

2

3

Contingency Coefficient

Chi-Square

Statistic
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Table 3.11, Conditional frequency distribution for Y7 and Y23 on Y6 

The conditional frequency table for Y6, Y7 and Y23 is illustrated in Table 3.11 where Y7 

should to be independent from Y23 given Y6. This relationship assumes the value 0.01 in 

Table 12, Appendix A and is hence the strongest conditional independence within the 

components. As can be seen in Table 3.11, Y7 and Y23 seems to be independent in each 

given tables for Y6, and it is thereby evident that Y7 and Y23 are independent given Y6.  

3.4 Component structures 

The component with the 7 variables Y6, Y7, Y10, Y12, Y14, Y15 and Y23 had   
 
     

different combinations of trivariate entropies, presented in Table 12, Appendix A. Among 
these, the strongest functional relationships one can observe are on Y15 from Y10 and 
Y14 (1.25), and on Y23 from Y6 and Y12 (1.25). The calculated A-values for these 
relationships are though only 74 % and 73 % but although these relationships are quite 
weak, it gives a hint of what kind relationships one could find in the tetravariate analysis. 
The output from the tetravariate calculations are presented in Table 14, Appendix A 
where one can see that the relationships calculated is not too strong neither with the 
smallest value of 1.11 which gives the A-value 75 %. This suggests a very weak 
functional relationship between the triad Y6, Y10 and Y14, and the single variable Y23. 
After analyzing the pentavariate entropies it can be seen that variables Y7, Y10, Y12 and 
Y14 have a functional relationship on Y15 (H6,7,10,12,14,15,23=6.696). The calculated A-value 
for those variables relation on Y15 is 84 % which is a much higher value than for the tri- 
and tetravariate entropies and the result is presented in Figure 3.5. 

 

Figure 3.5, Component structure explaining Y15 

1 2 3 1 2 3 1 2 3

Frequency 1678 70 226 1974 268 116 142 526 508 69 214 791

Row % 85% 4% 11% 51% 22% 27% 64% 9% 27%

Frequency 1586 166 312 2064 789 781 651 2221 1084 254 840 2178

Row % 77% 8% 15% 36% 35% 29% 50% 12% 39%

Frequency 2197 113 328 2638 482 225 276 983 989 139 458 1586

Row % 83% 4% 12% 49% 23% 28% 62% 9% 29%

Frequency 5461 349 866 6676 1539 1122 1069 3730 2581 462 1512 4555Total

Y7

Total

y23 y23

Y6=3Y6=2 Y6=1

y23

TotalTotal

3

1

2
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Even though the data at the present state is smaller than the original dataset, one can 
simplify the data even further using higher order relationships. The best way of doing so is 
by finding functional relations so that variables can be dropped and hence change the 
structure of the component. If the researcher decides that the A-value of 84 % for the 
relationship illustrated in Figure 3.5 is high enough, Y15 can be dropped. This would 
transform the component into one 3-dimensional component, one 2-dimensional and one 
single variable component. If this component were to be treated as a seven dimensional 

distribution the total response pattern would have been        . Dropping Y15 

changes the response patterns to having            outcomes and has 
consequently simplified the data greatly. 

In the component containing variables Y8, Y9, Y11, Y16 and Y18 there are 5 variables 

with   
 
     different combinations of trivariate entropies, presented in Table 13, 

Appendix A. The strongest trivariate functional relationship present is the quite weak 
relationship on Y18 from Y8 and Y9 (1.32) with an A-value of 74%.  When analyzing 
higher ordered entropies the relationship amongst the variables Y8, Y9, Y11, Y16 and 
Y18 gets more evident, especially the tetravariate degree of explanation on Y18 from Y8, 
Y9 and Y16 (1.02). When calculating the pentavariate entropies (H8,9,11,16=6.479) the A-
value is 85 % for Y8, Y9, Y11, Y16 degree of explanation on Y18 (relationships is 
illustrated in Figure 3.6).  

Since there are no more variables in the component, reaching for higher order 
relationships is not possible. If decided that an A-value of 85% is enough to consider the 
relationship as functional, the variable Y18 can be dropped in the same manner as 
earlier. Doings so would also have major consequences for the structure inside the 
component. If it were to be treated as a five dimensional distribution the total response 

pattern would have been      . But if Y18 is dropped, this splits the original 
component into two 2-dimensional components. The two 2-dimensional components 

would then together explain the original 243 possible response patterns with just    
     . The total structure and the underlying meaning of the variables will be further 
discussed in the forthcoming section. 

 

Figure 3.6, Component structure explaining Y18 

3.5 Total structure 

In Figure 3.7 the total structure of the entropies is presented along with the variable’s 

explanation. The components are also named according to their content.  
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Figure 3.7, Total structure of components 
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The explained variables that can be considered redundant are shown to the left in Figure 

3.7. Other variables are presented to the left of the dotted line and with the single 

independent variables to the right. 

The relationships within the components tend to follow an intuitive pattern. One could for 

example assume that a respondent’s satisfaction regarding his or her career would be 

related to the satisfaction regarding his or her work/life-balance, as the illustration shows. 

An exception is the component Eat out, which suggests that the city a person lives in 

explains how often that person eats dinner at restaurants. The two functional relationships 

between the components Culture and Recreation suggest that one can tell if a person 

goes to see concerts frequently or not, from his or her habits regarding visits to other 

cultural facilities, sport events and recreational habits. One can also predict a person’s life 

satisfaction from his or her satisfaction regarding career and health.  

The illustration also shows a bivariate relationship between how often a person work odd 

hours and how often he or she work from other places than the office. As one could have 

guessed, there is also a strong relationship between a person’s marital status and 

parental status since people that get children tend to be married first.  

The variables concerning how often one goes to concerts, eats at a restaurant and life 

satisfaction could from this model be considered redundant. These variables could 

therefore be left out from future use of the model since we can estimate these simply by 

knowing the variables explaining them. Presenting the data in this way compromises it 

into one 3-variable component, five 2-variable components and 13 single variable 

components and makes their relationships easy to grasp. 
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4 Conclusion 

The aim of the study has been to give a general understanding of the method of entropy 

analysis and evaluate its ability to analyze marketing research data. The process of using 

entropy analysis consists of several important steps and it is in many ways a creative 

process that leads to attaining the final component structures. The result is however of 

great use when it comes to analyzing discrete variables and explaining the relationships 

between variables in a dataset. In this study, the data turned out to reveal several 

interesting and complex discoveries, some of which might have been hard to find using a 

conventional analysis technique. 

The way in which to present relationships in relationship graphs is also of great help. This 

feature of the entropy analysis could make the method of great benefit in the area of 

marketing research where much effort is put into translating discoveries into 

comprehensible models. A relationship graph is also an instrument that can be developed 

in the future, both in its esthetical form and in the aspect of presenting more complex 

relationships.  

Even though entropy analysis could reveal interesting findings, the analysis process is 

with the tools available today, quite time consuming. This could threaten the 

attractiveness of entropy analysis and developing software that facilitates the analysis is 

vital for the future use of the method.  

In addition to these conclusions, there are also several practical aspects that need to be 

addressed in order to improve the practice of entropy analysis. 

 The J-matrix used in this study has been in absolute values. If the J-values had been 

standardized this would have changed the J-values and consequently the rest of the 

analysis. The use of standardized J-values or absolute J-values needs further attention in 

future research.  

 How to choose the critical J-value is now a quite subjective practice that determines 

which variables that is to be included or excluded in the components. By choosing a 

critical J-value one decides what variables are to be thought of as independent and which 

variables that are considered to be further examined. A more elaborate method for 

picking the best critical J-value could be of great use. 

 The process of picking the critical J-value also usually comes with an information loss. At 

the present state the researcher is unable to know if the information loss is motivated by 

how much the data gets simplified. The use of measures that would calculate the 

information loss and how much simpler a data becomes would be of interest.  

 It would be desirable if there was a measure that could help determine if a variable should 

be dropped or not. A measure like this could be based on how strong the relationship are 

towards the explained variable and how much simpler the structure would become. The 

use of helping measures is an area that could benefit from future research.  
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Appendix A 

Table 12. Calculations for trivariate entropies (Variables Y6, Y7, Y12, Y14, Y15, Y23) 

The variables being explained are sorted in ascending order and presented in the left column. The first row gives 

the inequality calculated and the second row explains the relationship among the variables in each inequality. 

  

Variables Entropy (X1X2) → X3 (X1X3) → X2 (X2X3) → X1 (X1X2)

 

X3 (X1X3)

 

X2 (X2X3)

 

X1 (X2 

 

 X3)|X1 (X1 

 

 X3)|X2 (X1 

 

 X2)|X3

 y6 * y10 * y12 4,196 1,20 1,43 1,29 0,26 0,08 0,25 0,02 0,20 0,02

 y6 * y10 * y14 4,279 1,29 1,35 1,47 0,15 0,16 0,08 0,10 0,02 0,03

 y6 * y10 * y15 4,162 1,17 1,30 1,45 0,23 0,21 0,10 0,15 0,04 0,02

 y6 * y10 * y23 4,126 1,13 1,41 1,40 0,15 0,09 0,14 0,04 0,08 0,03

 y6 * y12 * y14 4,121 1,36 1,19 1,29 0,08 0,26 0,25 0,03 0,01 0,20

 y6 * y12 * y15 4,043 1,28 1,18 1,28 0,12 0,28 0,26 0,04 0,02 0,18

 y6 * y12 * y23 3,922 1,16 1,21 1,25 0,12 0,25 0,29 0,01 0,06 0,18

 y6 * y14 * y15 4,186 1,26 1,32 1,43 0,14 0,11 0,12 0,06 0,07 0,04

 y6 * y14 * y23 4,060 1,13 1,35 1,41 0,15 0,08 0,13 0,04 0,09 0,02

 y6 * y15 * y23 4,011 1,15 1,30 1,38 0,13 0,10 0,16 0,02 0,08 0,05

 y7 * y6 * y10 4,449 1,42 1,46 1,46 0,09 0,08 0,08 0,04 0,03 0,03

 y7 * y6 * y12 4,221 1,19 1,30 1,46 0,27 0,25 0,08 0,20 0,03 0,01

 y7 * y6 * y14 4,376 1,35 1,47 1,45 0,09 0,08 0,09 0,03 0,04 0,03

 y7 * y6 * y15 4,278 1,25 1,44 1,42 0,15 0,10 0,12 0,05 0,07 0,02

 y7 * y6 * y23 4,188 1,16 1,40 1,48 0,12 0,14 0,06 0,09 0,01 0,03

 y7 * y10 * y12 4,346 1,36 1,42 1,44 0,10 0,09 0,10 0,04 0,05 0,03

 y7 * y10 * y14 4,268 1,28 1,36 1,45 0,16 0,15 0,08 0,10 0,03 0,02

 y7 * y10 * y15 4,141 1,15 1,31 1,42 0,25 0,20 0,11 0,15 0,06 0,01

 y7 * y10 * y23 4,190 1,20 1,41 1,47 0,08 0,10 0,07 0,05 0,02 0,04

 y7 * y12 * y14 4,260 1,33 1,35 1,43 0,10 0,11 0,10 0,04 0,03 0,04

 y7 * y12 * y15 4,164 1,24 1,33 1,40 0,16 0,13 0,13 0,06 0,06 0,03

 y7 * y12 * y23 4,129 1,20 1,34 1,45 0,08 0,12 0,08 0,05 0,01 0,05

 y7 * y14 * y15 4,153 1,24 1,32 1,41 0,16 0,11 0,13 0,06 0,07 0,03

 y7 * y14 * y23 4,114 1,20 1,33 1,46 0,08 0,10 0,07 0,05 0,01 0,04

 y7 * y15 * y23 4,052 1,22 1,27 1,42 0,06 0,13 0,11 0,03 0,01 0,08

 y10 * y12 * y14 4,183 1,27 1,37 1,36 0,16 0,09 0,15 0,03 0,09 0,03

 y10 * y12 * y15 4,064 1,15 1,35 1,30 0,25 0,11 0,20 0,05 0,15 0,01

 y10 * y12 * y23 4,082 1,17 1,36 1,32 0,11 0,10 0,19 0,04 0,13 0,12

 y10 * y14 * y15 3,997 1,18 1,28 1,25 0,22 0,15 0,26 0,03 0,13 0,06

 y10 * y14 * y23 3,998 1,18 1,28 1,35 0,10 0,16 0,16 0,03 0,03 0,09

 y10 * y15 * y23 3,914 1,20 1,19 1,28 0,08 0,21 0,22 0,02 0,03 0,16

 y12 * y14 * y15 4,076 1,25 1,32 1,33 0,15 0,12 0,13 0,05 0,06 0,03

 y12 * y14 * y23 4,004 1,18 1,33 1,35 0,10 0,10 0,10 0,04 0,04 0,04

 y12 * y15 * y23 3,951 1,19 1,28 1,32 0,09 0,12 0,14 0,03 0,04 0,07

 y14 * y15 * y23 3,936 1,19 1,29 1,31 0,09 0,11 0,13 0,03 0,04 0,06

Inequality D.1 Inequality D.2 Inequality D.3
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Table 13. Calculations for trivariate entropies  (Variables Y8, Y9, Y11, Y16, Y18) 

 
Table 14. Calculations for tetravariate entropies  

The variables being explained are sorted in ascending order and presented in the left column. The first row gives 

the inequality calculated and the second row explains the relationship among the variables in each inequality. 

 

Variables Entropy (X1X2) → X3 (X1X3) → X2 (X2X3) → X1 (X1X2)

 

X3 (X1X3)

 

X2 (X2X3)

 

X1 (X2 

 

 X3)|X1 (X1 

 

 X3)|X2 (X1 

 

 X2)|X3

 y8 * y9 * y11 4,321 1,36 1,42 1,36 0,13 0,09 0,17 0,02 0,09 0,05

 y8 * y9 * y16 4,147 1,18 1,31 1,42 0,20 0,21 0,11 0,13 0,03 0,04

 y8 * y9 * y18 4,030 1,06 1,26 1,32 0,27 0,25 0,21 0,18 0,13 0,11

 y8 * y9 * y21 4,202 1,24 1,44 1,38 0,09 0,08 0,15 0,00 0,07 0,06

 y8 * y11 * y16 4,189 1,29 1,35 1,36 0,09 0,13 0,17 0,02 0,05 0,09

 y8 * y11 * y18 4,010 1,11 1,34 1,28 0,22 0,15 0,25 0,03 0,13 0,06

 y8 * y11 * y21 4,108 1,21 1,34 1,36 0,11 0,15 0,17 0,03 0,05 0,08

 y8 * y16 * y18 3,894 1,06 1,22 1,32 0,28 0,16 0,21 0,09 0,13 0,02

 y8 * y16 * y21 4,072 1,24 1,31 1,38 0,09 0,08 0,15 0,00 0,07 0,06

 y8 * y18 * y21 3,905 1,23 1,14 1,28 0,09 0,20 0,25 0,01 0,06 0,17

 y9 * y11 * y16 4,160 1,19 1,43 1,33 0,19 0,06 0,19 0,02 0,15 0,02

 y9 * y11 * y18 4,099 1,13 1,39 1,36 0,20 0,10 0,15 0,06 0,11 0,01

 y9 * y11 * y21 4,218 1,25 1,39 1,47 0,07 0,09 0,05 0,06 0,01 0,03

 y9 * y16 * y18 3,861 1,13 1,15 1,28 0,21 0,24 0,23 0,07 0,06 0,09

 y9 * y16 * y21 4,031 1,30 1,21 1,34 0,02 0,18 0,18 0,01 0,01 0,16

 y9 * y18 * y21 3,998 1,28 1,17 1,37 0,04 0,16 0,15 0,02 0,01 0,13

 y11 * y16 * y18 3,960 1,13 1,23 1,38 0,21 0,16 0,10 0,12 0,06 0,01

 y11 * y16 * y21 4,086 1,25 1,34 1,39 0,07 0,05 0,10 0,01 0,05 0,03

 y11 * y18 * y21 3,982 1,25 1,23 1,23 0,08 0,10 0,25 0,01 0,16 0,19

 y16 * y18 * y21 3,861 1,29 1,17 1,23 0,04 0,17 0,15 0,02 0,01 0,14

Inequality E.3Inequality E.2Inequality E.1

Variables Tetra

1 * 2 * 3 * 4 Entropy (X2X3X4) → X1 (X1X3X4) → X2 (X1X2X4) → X3 (X1X2X3) → X4 (X2X3X4) 

 

 1 (X1X3X4) 

 

 2 (X1X2X4) 

 

 3 (X1X2X3) 

 

 4

 y6 * y10 * y12 * y14 5,46 1,28 1,34 1,18 1,27 0,26 0,17 0,28 0,17

 y6 * y10 * y12 * y15 5,34 1,27 1,29 1,17 1,14 0,27 0,21 0,28 0,26

 y6 * y10 * y12 * y23 5,32 1,24 1,40 1,19 1,12 0,30 0,11 0,27 0,16

 y6 * y10 * y14 * y15 5,43 1,43 1,24 1,27 1,15 0,11 0,27 0,17 0,25

 y6 * y10 * y14 * y23 5,39 1,39 1,33 1,26 1,11 0,15 0,18 0,17 0,17

 y6 * y10 * y15 * y23 5,29 1,37 1,28 1,16 1,13 0,17 0,23 0,24 0,16

 y6 * y12 * y14 * y15 5,35 1,27 1,16 1,31 1,23 0,27 0,29 0,13 0,17

 y6 * y12 * y14 * y23 5,25 1,24 1,19 1,32 1,12 0,30 0,27 0,11 0,16

 y6 * y12 * y15 * y23 5,18 1,23 1,17 1,26 1,14 0,31 0,29 0,14 0,14

 y6 * y14 * y15 * y23 5,31 1,37 1,30 1,25 1,12 0,17 0,14 0,15 0,16

 y10 * y12 * y14 * y15 5,32 1,24 1,32 1,26 1,14 0,26 0,13 0,18 0,26

 y10 * y12 * y14 * y23 5,33 1,33 1,34 1,25 1,15 0,18 0,12 0,18 0,13

 y10 * y12 * y15 * y23 5,23 1,28 1,31 1,15 1,16 0,23 0,15 0,26 0,12

 y10 * y14 * y15 * y23 5,17 1,23 1,25 1,17 1,17 0,27 0,18 0,23 0,11

 y12 * y14 * y15 * y23 5,24 1,30 1,29 1,23 1,16 0,16 0,15 0,17 0,12

 y8 * y9 * y11 * y16 5,49 1,33 1,30 1,34 1,17 0,20 0,22 0,15 0,22

 y8 * y9 * y11 * y18 5,36 1,26 1,35 1,33 1,04 0,27 0,17 0,16 0,30

 y8 * y9 * y11 * y21 5,53 1,31 1,42 1,32 1,20 0,22 0,10 0,16 0,12

 y8 * y9 * y16 * y18 5,16 1,30 1,27 1,13 1,02 0,22 0,25 0,25 0,32

 y8 * y9 * y16 * y21 5,38 1,35 1,31 1,18 1,23 0,18 0,21 0,21 0,09

 y8 * y9 * y18 * y21 5,26 1,26 1,35 1,06 1,23 0,27 0,16 0,28 0,10

 y8 * y11 * y16 * y18 5,22 1,26 1,33 1,21 1,03 0,27 0,16 0,17 0,31

 y8 * y11 * y16 * y21 5,40 1,31 1,32 1,29 1,21 0,22 0,16 0,10 0,12

 y8 * y11 * y18 * y21 5,21 1,23 1,31 1,10 1,20 0,29 0,18 0,23 0,12

 y8 * y16 * y18 * y21 5,12 1,26 1,22 1,05 1,23 0,27 0,17 0,29 0,10

 y9 * y11 * y16 * y18 5,24 1,28 1,38 1,14 1,08 0,24 0,11 0,25 0,26

 y9 * y11 * y16 * y21 5,41 1,32 1,38 1,19 1,25 0,19 0,11 0,20 0,08

 y9 * y11 * y18 * y21 5,34 1,36 1,34 1,12 1,24 0,16 0,15 0,22 0,08

 y9 * y16 * y18 * y21 5,14 1,28 1,14 1,11 1,28 0,24 0,24 0,23 0,04

 y11 * y16 * y18 * y21 5,20 1,34 1,22 1,11 1,24 0,15 0,17 0,22 0,08

Inequality D.1 Inequality D.2
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Variables Tetra

1 * 2 * 3 * 4 Entropy (X1X2) 

 

 (X3X4) (X1X3) 

 

 (X2X4) (X1X4) 

 

 (X2X3) (X1X2) 

 

 X3 | X4 (X1X3) 

 

 X2 | X4 (X2X3) 

 

 X1 | X4

 y6 * y10 * y12 * y14 5,46 0,36 0,12 0,38 0,21 0,04 0,22

 y6 * y10 * y12 * y15 5,34 0,42 0,14 0,43 0,19 0,02 0,19

 y6 * y10 * y12 * y23 5,32 0,35 0,17 0,30 0,20 0,04 0,19

 y6 * y10 * y14 * y15 5,43 0,31 0,22 0,25 0,08 0,07 0,03

 y6 * y10 * y14 * y23 5,39 0,25 0,26 0,13 0,10 0,11 0,04

 y6 * y10 * y15 * y23 5,29 0,33 0,30 0,14 0,19 0,16 0,06

 y6 * y12 * y14 * y15 5,35 0,16 0,34 0,34 0,04 0,20 0,19

 y6 * y12 * y14 * y23 5,25 0,17 0,36 0,29 0,05 0,21 0,19

 y6 * y12 * y15 * y23 5,18 0,21 0,35 0,29 0,09 0,22 0,20

 y6 * y14 * y15 * y23 5,31 0,25 0,20 0,15 0,10 0,07 0,06

 y10 * y12 * y14 * y15 5,32 0,33 0,25 0,22 0,09 0,04 0,07

 y10 * y12 * y14 * y23 5,33 0,23 0,15 0,21 0,12 0,06 0,11

 y10 * y12 * y15 * y23 5,23 0,31 0,16 0,26 0,20 0,08 0,16

 y10 * y14 * y15 * y23 5,17 0,27 0,20 0,30 0,18 0,11 0,21

 y12 * y14 * y15 * y23 5,24 0,22 0,17 0,18 0,11 0,08 0,09

 y8 * y9 * y11 * y16 5,49 0,31 0,14 0,31 0,10 0,05 0,12

 y8 * y9 * y11 * y18 5,36 0,34 0,25 0,28 0,07 0,03 0,08

 y8 * y9 * y11 * y21 5,53 0,19 0,19 0,21 0,10 0,08 0,14

 y8 * y9 * y16 * y18 5,16 0,38 0,39 0,24 0,11 0,11 0,03

 y8 * y9 * y16 * y21 5,38 0,28 0,28 0,12 0,19 0,19 0,10

 y8 * y9 * y18 * y21 5,26 0,34 0,24 0,22 0,25 0,15 0,18

 y8 * y11 * y16 * y18 5,22 0,25 0,35 0,28 0,03 0,07 0,07

 y8 * y11 * y16 * y21 5,40 0,20 0,19 0,20 0,08 0,10 0,13

 y8 * y11 * y18 * y21 5,21 0,31 0,21 0,29 0,20 0,12 0,21

 y8 * y16 * y18 * y21 5,12 0,34 0,24 0,22 0,25 0,15 0,18

 y9 * y11 * y16 * y18 5,24 0,31 0,23 0,31 0,10 0,02 0,10

 y9 * y11 * y16 * y21 5,41 0,25 0,07 0,25 0,18 0,05 0,18

 y9 * y11 * y18 * y21 5,34 0,26 0,12 0,22 0,18 0,08 0,14

 y9 * y16 * y18 * y21 5,14 0,22 0,27 0,26 0,19 0,23 0,22

 y11 * y16 * y18 * y21 5,20 0,26 0,23 0,12 0,19 0,15 0,09

Inequality D.3 Inequality D.4

Variables Tetra

1 * 2 * 3 * 4 Entropy (X1X2) 

 

 X4 | X3 (X1X4) 

 

 X2 | X3 (X2X4) 

 

 X1 | X3 (X1X3) 

 

 X4 | X2 (X1X4) 

 

 X3 | X2 (X3X4) 

 

 X1 | X2

 y6 * y10 * y12 * y14 5,46 0,10 0,11 0,03 0,04 0,22 0,21

 y6 * y10 * y12 * y15 5,34 0,16 0,16 0,03 0,07 0,23 0,21

 y6 * y10 * y12 * y23 5,32 0,09 0,05 0,07 0,09 0,21 0,25

 y6 * y10 * y14 * y15 5,43 0,16 0,14 0,06 0,06 0,04 0,05

 y6 * y10 * y14 * y23 5,39 0,11 0,05 0,10 0,10 0,04 0,09

 y6 * y10 * y15 * y23 5,29 0,10 0,04 0,09 0,09 0,05 0,11

 y6 * y12 * y14 * y15 5,35 0,08 0,23 0,22 0,07 0,06 0,03

 y6 * y12 * y14 * y23 5,25 0,09 0,21 0,25 0,09 0,04 0,07

 y6 * y12 * y15 * y23 5,18 0,09 0,19 0,23 0,08 0,04 0,08

 y6 * y14 * y15 * y23 5,31 0,11 0,05 0,09 0,10 0,06 0,12

 y10 * y12 * y14 * y15 5,32 0,17 0,07 0,14 0,16 0,11 0,21

 y10 * y12 * y14 * y23 5,33 0,07 0,06 0,05 0,06 0,12 0,12

 y10 * y12 * y15 * y23 5,23 0,07 0,05 0,04 0,05 0,16 0,17

 y10 * y14 * y15 * y23 5,17 0,06 0,09 0,08 0,05 0,14 0,15

 y12 * y14 * y15 * y23 5,24 0,07 0,06 0,06 0,06 0,08 0,09

 y8 * y9 * y11 * y16 5,49 0,18 0,18 0,08 0,05 0,11 0,12

 y8 * y9 * y11 * y18 5,36 0,21 0,13 0,15 0,16 0,12 0,19

 y8 * y9 * y11 * y21 5,53 0,06 0,06 0,10 0,10 0,13 0,14

 y8 * y9 * y16 * y18 5,16 0,18 0,08 0,15 0,18 0,08 0,15

 y8 * y9 * y16 * y21 5,38 0,08 0,04 0,10 0,08 0,04 0,10

 y8 * y9 * y18 * y21 5,26 0,06 0,02 0,08 0,08 0,14 0,19

 y8 * y11 * y16 * y18 5,22 0,16 0,12 0,19 0,21 0,13 0,15

 y8 * y11 * y16 * y21 5,40 0,10 0,12 0,14 0,06 0,06 0,10

 y8 * y11 * y18 * y21 5,21 0,09 0,09 0,10 0,06 0,14 0,18

 y8 * y16 * y18 * y21 5,12 0,06 0,02 0,07 0,08 0,14 0,19

 y9 * y11 * y16 * y18 5,24 0,11 0,07 0,07 0,17 0,21 0,20

 y9 * y11 * y16 * y21 5,41 0,06 0,07 0,02 0,01 0,16 0,16

 y9 * y11 * y18 * y21 5,34 0,05 0,06 0,02 0,02 0,13 0,12

 y9 * y16 * y18 * y21 5,14 0,01 0,10 0,10 0,03 0,08 0,07

 y11 * y16 * y18 * y21 5,20 0,05 0,02 0,06 0,07 0,08 0,11

Inequality D.4
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Variables Tetra

1 * 2 * 3 * 4 Entropy (X2X3) 

 

 X4 | X1 (X2X4) 

 

 X3 | X1 (X3X4) 

 

 X2 | X1 X3

 

X4 |(X1X2) X2

 

X4|(X1X3)

 y6 * y10 * y12 * y14 5,46 0,12 0,04 0,11 0,02 0,09

 y6 * y10 * y12 * y15 5,34 0,18 0,05 0,16 0,03 0,14

 y6 * y10 * y12 * y23 5,32 0,05 0,03 0,05 0,01 0,03

 y6 * y10 * y14 * y15 5,43 0,17 0,12 0,21 0,02 0,11

 y6 * y10 * y14 * y23 5,39 0,06 0,12 0,12 0,02 0,02

 y6 * y10 * y15 * y23 5,29 0,04 0,16 0,17 0,01 0,02

 y6 * y12 * y14 * y15 5,35 0,09 0,08 0,06 0,05 0,03

 y6 * y12 * y14 * y23 5,25 0,05 0,06 0,04 0,03 0,01

 y6 * y12 * y15 * y23 5,18 0,03 0,06 0,05 0,02 0,01

 y6 * y14 * y15 * y23 5,31 0,05 0,07 0,09 0,01 0,03

 y10 * y12 * y14 * y15 5,32 0,07 0,05 0,08 0,02 0,04

 y10 * y12 * y14 * y23 5,33 0,06 0,05 0,07 0,02 0,03

 y10 * y12 * y15 * y23 5,23 0,05 0,06 0,09 0,01 0,03

 y10 * y14 * y15 * y23 5,17 0,04 0,04 0,05 0,01 0,03

 y12 * y14 * y15 * y23 5,24 0,05 0,07 0,08 0,02 0,03

 y8 * y9 * y11 * y16 5,49 0,14 0,03 0,14 0,01 0,12

 y8 * y9 * y11 * y18 5,36 0,11 0,04 0,09 0,03 0,08

 y8 * y9 * y11 * y21 5,53 0,04 0,05 0,02 0,03 0,01

 y8 * y9 * y16 * y18 5,16 0,13 0,18 0,17 0,05 0,04

 y8 * y9 * y16 * y21 5,38 0,01 0,13 0,13 0,00 0,00

 y8 * y9 * y18 * y21 5,26 0,01 0,09 0,09 0,01 0,00

 y8 * y11 * y16 * y18 5,22 0,11 0,10 0,04 0,08 0,03

 y8 * y11 * y16 * y21 5,40 0,03 0,02 0,05 0,01 0,03

 y8 * y11 * y18 * y21 5,21 0,04 0,04 0,06 0,01 0,03

 y8 * y16 * y18 * y21 5,12 0,01 0,10 0,09 0,01 0,01

 y9 * y11 * y16 * y18 5,24 0,12 0,08 0,07 0,06 0,05

 y9 * y11 * y16 * y21 5,41 0,06 0,03 0,07 0,01 0,05

 y9 * y11 * y18 * y21 5,34 0,07 0,08 0,11 0,01 0,04

 y9 * y16 * y18 * y21 5,14 0,03 0,09 0,07 0,02 0,01

 y11 * y16 * y18 * y21 5,20 0,02 0,13 0,13 0,01 0,01

Inequality D.4 Inequality D.5

Variables Tetra

1 * 2 * 3 * 4 Entropy X2

 

X3|(X1X4) X1

 

X4|(X2X3) X1

 

X3|(X2X4) X1

 

X2|(X3X4)

 y6 * y10 * y12 * y14 5,46 0,01 0,01 0,19 0,03

 y6 * y10 * y12 * y15 5,34 0,01 0,01 0,17 0,14

 y6 * y10 * y12 * y23 5,32 0,02 0,05 0,17 0,12

 y6 * y10 * y14 * y15 5,43 0,06 0,03 0,01 0,29

 y6 * y10 * y14 * y23 5,39 0,08 0,07 0,01 0,30

 y6 * y10 * y15 * y23 5,29 0,14 0,07 0,03 0,26

 y6 * y12 * y14 * y15 5,35 0,02 0,02 0,01 0,21

 y6 * y12 * y14 * y23 5,25 0,02 0,05 0,01 0,28

 y6 * y12 * y15 * y23 5,18 0,04 0,05 0,02 0,24

 y6 * y14 * y15 * y23 5,31 0,05 0,07 0,04 0,26

 y10 * y12 * y14 * y15 5,32 0,02 0,11 0,06 0,11

 y10 * y12 * y14 * y23 5,33 0,02 0,03 0,08 0,20

 y10 * y12 * y15 * y23 5,23 0,05 0,03 0,13 0,12

 y10 * y14 * y15 * y23 5,17 0,02 0,02 0,12 0,11

 y12 * y14 * y15 * y23 5,24 0,04 0,03 0,05 0,16

 y8 * y9 * y11 * y16 5,49 0,01 0,03 0,09 0,19

 y8 * y9 * y11 * y18 5,36 0,01 0,10 0,06 0,24

 y8 * y9 * y11 * y21 5,53 0,02 0,05 0,07 0,16

 y8 * y9 * y16 * y18 5,16 0,09 0,12 0,02 0,30

 y8 * y9 * y16 * y21 5,38 0,13 0,07 0,03 0,15

 y8 * y9 * y18 * y21 5,26 0,08 0,06 0,12 0,05

 y8 * y11 * y16 * y18 5,22 0,01 0,10 0,01 0,29

 y8 * y11 * y16 * y21 5,40 0,02 0,05 0,05 0,17

 y8 * y11 * y18 * y21 5,21 0,03 0,04 0,13 0,07

 y8 * y16 * y18 * y21 5,12 0,09 0,06 0,12 0,05

 y9 * y11 * y16 * y18 5,24 0,01 0,05 0,09 0,21

 y9 * y11 * y16 * y21 5,41 0,02 0,01 0,15 0,09

 y9 * y11 * y18 * y21 5,34 0,05 0,01 0,11 0,13

 y9 * y16 * y18 * y21 5,14 0,06 0,01 0,06 0,09

 y11 * y16 * y18 * y21 5,20 0,12 0,04 0,05 0,11

Inequality D.5


