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Abstract

This study aims to evaluate flexible parametriosa@ models and illustrate them using
data from the Age, Gene/Environment Susceptib{RBES) — Reykjavik Study. The
flexible parametric survival models are comparethwihe Cox model and the standard
parametric models. The goal is to examine if batisights can be gained by modeling
the given data with flexible parametric models asaliernative to the standard models.
The parameter estimates from the flexible modetirgycomparable with those from the
Cox proportional hazard modeling but have the &oltil characteristics of parametric
models. Hence, they combine the best propertigb bb the standard and flexible
models. Comparison and evaluation is done in sushyaso that the user of the data can
assess if the modifications in the data modelirg@ss are beneficial.

Multiple models are fitted using data from about5BY members from the AGES study
conducted by the Icelandic Heart Association. Thest it of the flexible parametric
models is attained by the Weibull extension, thepprtional hazard model with 3
degrees of freedom, PH(3). The results show a antiat gain in fit compared with the
standard Weibull model and the parameter estinfatethe hazard ratios are comparable
with those from the Cox model. In tests of calilmatand concordance, the PH(3) model
and the Cox model fit the data equally well. Idamonstrated how the PH(3) model can
be used for predictions beyond the study obsenvagteriod - a feature that the Cox
model lacks.

Based on the results, we recommend the use ofHiG@) Phodel to analyze the data from
the AGES study as the PH(3) model fits the dateasdt as good as the Cox model and
additionally offers the predicting features of ilae parametric modeling.
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1 Introduction

The most widely used models in survival analysigsmduthe last decades have been the
semi-parametric Cox model and the standard paramatidels. Many have chosen the
well-known Cox model over the standard parametraddets due to lack of fit those
models often show. However, there are disadvantafjesing the Cox model. It works
well in estimating the hazard or survival of on@upy compared with another if the
hazard is proportional but it leaves out estimatidrthe baseline hazard (Royston &
Lambert, 2011). Hjort (1992) pointed out that thecess of the Cox model may have had
the unintended side-effect that the baseline hamatdo rarely studied. He pointed out
that a parametric version of the Cox model woulaldléo more precise estimation of
survival probabilities and it would then additioiyatontribute to a better understanding
of the phenomenon under study.

In 2002 Royston and Parmar published an articleirstndduced new models for survival

analysis, flexible parametric proportional-hazaeasl proportional-odds models. These
new models are extensions of some of the standarahyetric models and have been
shown to give a better fit to the data than thenddad ones in many situations.

Furthermore the flexible proportional-hazard madedimilar in parameter estimation to

the Cox model and additionally estimates the basdiazard parametrically.

The Icelandic Heart Association has been workinth whe data from the AGES study
and the data has mainly been modeled through thefuthe Cox model. Due to issues
such as lack of estimation of the baseline hazadltherefore difficulties in predictions
from the model, they are interested in seeing vdaat be gained by fitting the recent
flexible parametric models.

In recent years the use of parametric survival rnsotias been increasing in applied
research. The benefits of these models have beowme recognized and the availability
of more flexible methods has become more accessildtandard software (Crowther &
Lambert, 2014).

Royston and Parmar (2002) applied their new moteta/o data sets in cancer research
in 2002. In this article they focused on showingttthrough the flexible parametric

models it is simple to model the hazard functioioh often has been considered
problematic, and showed the benefits of it, forregke in clinical trials.

In 2009 Lambert and Royston used the method oitfleyparametric models in a study of
breast cancer survival and incidence of hip fractur prostate cancer patients. They
compared estimates from a Cox model to estimatan fa flexible parametric model
which models on the proportional hazard and shoted the estimates were very
similar. They also showed that there are severahratdges associated with the flexible
parametric approach compared with the Cox modebe@aslly with reference to
predictions.

Since 2009 flexible parametric models have beeriexppo several circumstances in
survival analysis with good result. It has beereeged to be used in relative survival,
and survival analysis dealing with all cause or seaspecific survival. A flexible

parametric cure model has been developed and #l#egarametric relative survival

model for estimating life expectancy and loss ipextation of life has been applied
(Andersson, 2013).



The purpose of this study is to evaluate the difiermethods of survival analysis and
apply to the given data. The recent method of flexiparametric survival models is
examined and compared with the Cox model and @redard parametric models. It will
be shown how some of the disadvantages with then@mdel and the standard parametric
models can be resolved through the use of thebliexiarametric models. The goal is to
estimate if a considerable improvement in fit canglained by modeling the AGES data
with flexible parametric models compared with staod parametric models. The
parameter estimates should be in agreement withptbportional hazard estimates
produces by the Cox model and additionally have ¢haracteristics of parametric
models. In that way it might be possible to coreldime best of both models.

It is of interest to the Icelandic Heart Associatio fit the flexible parametric models to
the data provided, and estimate if it is a viabigpriovement opportunity to begin
modeling its data with flexible parametric modeistead of the Cox model. These types
of models have not been applied to this data bedarktherefore it is interesting to see
the fit in comparison to standard parametric modals the Cox model, which has mainly
been applied to the data previously.

The research questions of this study are as follows

* Do the flexible parametric models give a gooddithe data?

» Is the fit of the chosen flexible model better thahat can be attained by a
standard parametric model?

* Are the parameter estimates for the hazard rafideeocovariates in agreement
with the ones accomplished by the Cox model?

The remainder of the paper is organized as folldwsection two the standard survival

models, the parametric models and the Cox modelstrdied and the advantages and
disadvantages of the models discussed. In sedtier the flexible parametric models are
studied as an alternative method to the standarihade and the theory behind the

method explained. Measurements of goodness abffisdirvival models are examined in

section four. Section five covers the AGES study e database with explanation about
the variables and analysis in this paper. In sectix the results are introduced and
section seven follows with discussion and conclusio

2 Standard modelsfor survival data

2.1 Survival analysis

Survival analysis is a class of statistical methosisd to analyze data in the form of times
from a well-defined time origin until the occurrenaf some particular event or some sort
of an end point. Time origin often correspondshe tecruitment of an individual into a

study. The event or end point is often consideretha death of the individual, but can

also represent something else. It could for exarbpleelief of pain or the recurrence of
symptoms (Collett, 2003). Allison (2010) descrila@sevent as a “qualitative change that
can be situated in time”. By that he means a ttimsfrom one discrete state to another.
When the event is death, the change will be tremmsitg from the state of being alive to

the state of being dead. In this thesis the tingirois considered as the recruitment into
the AGES study in 2002 and the event of interedegth.

An important feature of survival data which makiedifficult to handle with conventional
statistical methods is censoring. When the endtmdimterest (in this case death) has not
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been observed for an individual, the individualisvéval time is said to be censored.
This happens mainly for two reasons. First, sontéviduals may not have experienced
the event of interest when the data is being aedlye.g. some individuals are still alive
when the study is terminated. Second, individualsvival status may be unknown
because that individual has been lost to follow-Tipis could e.g. be an individual that
was originally in the study but has then moved aaag contact has been lost (Collett,
2003). All methods of survival analysis allow f@nsoring where procedures are applied
that combine the information in the censored armknsored cases in a way that produces
consistent estimates of the parameters of intefidss can be accomplished by the
method of maximum likelihood or patrtial likelihogdllison, 2010).

When survival data is being described, the surviiattion and the hazard function are
of main interest. Apart from those we have the datiwe distribution function and the
probability density function. The actual surviwiahe of an individualt, is the value of a
variable, T, which can take any non-negative value. The differvalues ofT have a
probability distribution and is called the random variable associated withsiinival
time. The random variabl€ has an underlying probability density functiét). The
distribution function ofT is given by

F(t)=P(T<t)= f f(u) du.
0

F(t) represents the probability that the survival timdess than some valug(Collett,
2003).

The survival function oT is given by

S(t)=P(T=t)=1—-F(t).
St) is defined as the probability that the survivahdiis greater than or equal tolt
therefore represents the probability that an imhligl survives from the time origin to a
time equal to or beyontd Collett, 2003).

The probability density function is a common waydt&scribe probability distributions in
the case of continuous variables. It is given by

dF(t) _ ds(t) (2.1)

o ==z dt

f(t) is the derivative, or the slope, of the cumulatiNgtribution functionF(t) (Allison,
2010).

The hazard or risk of death at a timés expressed through the hazard function. The
hazard function of is given by

h(t) = lim

Pt<T<t+tIT = t)
6t—0 '

ot

h(t) is defined as the probability that an individusdsdat timet, conditional on survival
up to that time. The cumulative hazardlaé given by

H(t) = [ h(w) du.
3



H(t) is featured widely in survival analysis (Colletf(3).

The survival function, the hazard function and grebability density function are all
different ways to describe the continuous probgbdistribution. If one is known, the
other two can be derived. In equation (1) the i@teship between the probability density
function and the survival function is given. Thezhrd can also be expressed in terms of
the probability density function and the survivahétion

2.2
h(t) = % (2:2)

By combining equations (2.1) and (2.2) it can benshat

d 2.3
() = -5 logS(®)} @9
By integrating both sides of equation (2.3), anregpion for the survival function in
terms of the hazard function is gained.

t (2.4)
S(t) =exp {—J- h(u)du} = exp{—H(t)},

Together, equations (2.2) and (2.4) lead to
f(t) = h(t)exp {—f h(u)du} = h(t)exp{—H(t)}
0

Knowing the relationships between these functiomsextremely useful in survival
analysis because it is often necessary to move fnoeninterpretation to another (Allison,
2010).

2.2 Graphical methods

The first popular method to analyze survival datswhe Kaplan Meier (KM) method,
and today it is still normally the first step iretlanalysis of ungrouped censored survival
data. To obtain the KM estimates of the survivaiction a series of time intervals is
constructed such that one death time is contame@ch interval. The death time is taken
to occur at the start of the interval (Collett, 2R0In the absence of censored data, the
KM estimator is intuitive and simplé.(t) is then simply the proportion of observations
in the sample with event times greater thhaim the presence of censored observations
things get more complicated. There ardistinct event times. At each tintg there are

n; individuals at risk, that have not yet experientieglevent nor been censoret}.is the
number of individuals who die at tinte Then the KM estimator is defined as:

. d;
S(t) = | | 1-—=
n.
jitjst J
for t(;) <t <ty (Allison, 2010). A KM plot of the survival functiois a step function
where the estimated survival probabilities decreasp by step, at each death time and

stay constant between adjacent death times (CA@@3).



When estimating the cumulative hazard functiéf(t), graphically here is a good
nonparametric method that has good small-samplpepties called the Nelson-Aalen

estimator (NA)
~ d;
A=) 2
n.

St ]
jitjst

As stated before there is a known relationship betwthe survival and cumulative

hazard functions$(t) = exp{—H(t)}. Therefore, it is possible to change one estimatio
to the other, but in fact there can be a differeincthe estimation between the KM and
NA. Asymptotically the two estimators are equivaleat the KM estimator is superior

when estimating the survival function in small séespand the NA estimator is superior
when estimating the small sample cumulative hatardtion (Cleves, et al., 2002).

The hazard function is the derivative of the curiwéahazard function. The NA is a step
function and can therefore not be directly difféitied which makes the matter of
deriving the hazard function slightly complicat@the steps of the NA cumulative hazard
can be smoothed with a kernel smoother and thehahard function can be estimated.
First the hazard contribution is estimated as

AR () = H(4) — H(tj-1)
Then the hazard can be estimated by

D
~ t—1t\
h(t) = b Kt< - ]>AH(tj)
j=1

for some kernel functio; and bandwithb, summated over thB times which failure
occurs (Cleves, et al., 2002).

The KM and NA methods described can be useful éenahalysis of a single sample of

survival data, or in the comparison of two or mgreups of survival times. When a

model has two or more explanatory variables, eeg.and age, the resulting data set is
too complex for the Kaplan Meier estimates, sifed is no way to test for interactions
(Allison, 2010). Then two different methods haweb popular. First, parametric models
or so called Accelerated Failure Time Models. Sd¢time well-known Cox model.

2.3 Cox model

Cox introduced a model called proportional hazardslel in 1972 (Cox, 1972). The
model is based on the assumption of proportionadufts but assumes no particular form
of probability distribution for the survival timeSherefore, the model is referred to as a
semi-parametric model (Collett, 2003).

The proportional hazards model can be expresstukiform

hy (t) = Yhe(t),
where h,,(t) could represent the hazard of death for malesrad t and h(t) could
represent the hazard of death for females at tiniis holds for any non-negative value
of t, and wherep is a constant. This implies that the hazard oftth® groups, males and
females, is proportional over time. The valuejofs the ratio of the hazards of death at



any time for males relative to females. Therefgrés known as the relative hazard, or
hazard ratio (Collett, 2003).

An alternative way of expressing this model is titavh,(t) for the hazard function of a
comparison group, e.g. for males. The hazard fberogroups, here females, is then
written as relative to the comparison grouh,(t). The relative hazard), cannot be
negative and is often set tbh = exp(f), so thatg = log(y)). Any value ofg will then
lead to a positive value @f. Let X be an indicator variable, which takes the valderO
the comparison group, males, and unity for femadles; is the value oX for theith
individual,i=1,2,...n, the hazard function for this individual can betien as

h(t|x;) = ho(t)ehxi,
This proportional hazards model for the comparisbriwo treatment groups can be
generalized to the situation where the hazard affdat a particular time depends on the
values of the covariate vector The hazard of thigh individual can then be written as

h(t|x;) = P(x)ho(2),
wherey (x;) is a function of the values of the vectqrof explanatory variables for the
ith individual. The functionp is interpreted as the hazard at timéor an individual
whose vector of explanatory variablesxis relative to the hazard for an individual for
whom x = 0. As before,(x;) can be written asxp(f,x;) . Then the general
proportional model becomes

h(t]x;) = ho(t)exp(Byrx;)

This can be re-expressed as
h(t|x)\
10g< ho(t) - :Bxxi

Therefore the proportional hazards model can atéscegarded as a linear model for the
logarithm of the hazard ratio (Collett, 2003).

2.4 Parametric models

Parametric survival models assume an underlyingilolision of the survival times. The
models can be written in the log-time metric, knoasaccelerated failure-time (AFT)
metric, or in the hazard metric (Cleves, et alQ20

Proportional hazards models are written

h(t]x;) = ho(t) exp(x;By)

The distinction of this model from the Cox modelthat in the parametric PH model a
functional form forh,(t) is specified and not left unparameterized as énGox model.
The baseline hazard,(t), can follow Weibull distribution for example. Thesnodels
produce results that are directly comparable talltesby Cox regression and this
comparability is probably the most attractive cletgastic of the parametric PH model.
Additionally it produces estimates of the ancillparameters for the assumed distribution
and from that the predicted baselihg(t), the baseline hazard function, can be obtained
(Cleves, et al., 2002).

The accelerated failure-time models are written

In(t;) = x;B + In(T})



where T; can follow different distributions. The word aceelted is used because a
distribution is assumed folT; = exp(—x;B,)t; and exp(—x;B,) is called the
acceleration parameter. ¢kp(—x;B8,) = 1 thenT; = t; and time passes at its normal
rate. If exp(—x;B,) > 1 thenT; < t; and time passes more quickly for the subject and
failure is expected to occur sooner. Finallyesip(—x;B8,) < 1 thenT; > t; and failure is
expected to occur latem(T;) is a random quantity with a distribution deterndangy
what is assumed about the distributiorTpénd it is the distribution df; that is specified
(Cleves, et al., 2002).

Some AFT models, e.g. the Weibull, have both a ftbnaterpretation and an AFT
interpretation but other AFT models, e.g. the lggltic and lognormal have no natural
PH interpretation.

The three parametric models which have been extebgeflexible parametric models
will be reviewed here, that is the Weibull modak toglogistic model and the lognormal
model.

In the PH metric the Weibull model assumes the lbesdazard of the fornk,(t) =
ptP L exp(B,). p is an ancillary shape parameter estimated frondéte ancexp(B,) is
the scale parameter. Under the PH model, gk/en set of covariates

h(t]x;) = ho(t) exp(x;By) = ptP~' exp(Bo + xiBx)
This yields
H(t|x;) = exp(Bo + x;B)t?
S(tlx;) = exp{—exp(Bo + X;B,)t"}

Depending on the estimated parametethe Weibull distribution provides a variety of
monotonically decreasing or increasing shapes efhfzard function. When = 1 the
hazard is constant, when< 1 it is monotone decreasing and monotone increasiren

p > 1. Hence, when modeling data that exhibits monotbaeard rate, the Weibull
distribution can be a suitable choice (Cleves).eR802).

In the AFT metric the loglogistic model assumeg ffas distributed as loglogistic with
parameter$f,, y). Thus

In(t;) = x;By + In(T)) = By + X, B + 1

whereu; follows a logistic distribution. By acceleratinbet effect of time on survival
experience the AFT formulation can be derived. Witk= 0, the baseline survival
function oft; is

-1
So(t) = 1+ fexp(=po)t )

In the presence of non-zero covariates the tinaedglerated by a factor etp(—x;f,)
Thus

S(tilx;) = Solexp(—x;B,)t;}



-1

= |1+ exp(=0) exp(—xiB)e )|

-1

= [1+ ten(-p0 ~ xiB0Y ]

If y < 1 the logistic hazard is unimodal, first the hazimcteases and then decreases but
if y > 1 the hazard is monotone decreasing (Cleves, &Gi2).

In the AFT metric the lognormal model assumes Thas distributed as lognormal with
parameter$f,, ). Thus

In(t;) = x;Bx + In(T}) = o + X Bx + 1

whereu; follows a standard normal distribution. By accaterg the effect of time on
survival experience the AFT formulation can be deati With x = 0, the baseline
survival function oft; is

=10 (22E) o[22k

where @ is the cumulative standard normal distribution.eTéame way as with the
loglogistic model the effect of the covariates & dccelerate time by a factor of
exp(—x;B,). Thus

S(tilx;) = Solexp(—x;B)t;}

_ ¢ [ Infexp(—x;B,)t:} — ﬁol
o
= & [ Int; — (B0 + Xiﬁx)l
o

The hazard function of the lognormal model is nonatonic, it increases and then
decreases in a unimodal way (Cleves, et al., 2002).

The loglogistic and lognormal models are similard aneither has a natural PH

interpretation, but the loglogistic model has apamional odds (PO) interpretation. One
advantage of the loglogistic model over the logredrmodel is that the mathematical

expressions of the hazard and survival functioessanpler and the expressions do not
include the normal cumulative distribution functi@@leves, et al., 2002).

2.5 Drawbacks of the standard models
Both the Cox model and the standard parametric lddere some weaknesses that have
led to the development of more flexible models.

Royston and Parmar (2002) pointed out three istumsthey have regarding the Cox
model. First, that the behaviour of the hazard fioncis of potential interest, for instance
related to the time-course of an illness. Seconely say that there is an issue with the
Cox model regarding how to deal with non-propordlohazards which may occur.

Although the model may be extended to allow for-pooportional hazards there is no
widely accepted approach. Third, an issue arisgbenvalidation of a survival model.

Since the baseline hazard is not modeled the fittedel is too closely adapted to the
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data at hand. They say that the strength of ther@adel is to be able to fit a model and
get regression coefficients without thinking abthé underlying distribution, but this is
also the weakness of the model.

Hjort (1992) pointed out that the success of thelehdnas perhaps had the unintended
side-effect that practitioners too seldomly inveforts in studying the baseline hazard.
He said that if there would be an adequate paramedrsion of the Cox model it would
lead to more precise estimation of survival proli@si and concurrently contribute to a
better understanding of the phenomenon under stG@ayx himself said in a radio
interview in 1994 that he would normally wish tockke a problem parametrically,
because operations such as predictions were so pasgir (see Royston and Lambert,
2011).

The standard parametric models do estimate thdilbadezard parametrically and the
advantage of using the parametric approach isdle ef obtaining predictions (Lambert
& Royston, 2009). The problem with many of thosedels is that they make strong
assumptions about the shape of the baseline hdaaction. The Weibull model, as
previously stated, assumes a monotonically inangasr decreasing baseline hazard and
the lognormal model assumes a unimodal hazard. daloften exhibit turning points in
the underlying hazard function and therefore thampatric models are often not flexible
enough (Crowther & Lambert, 2014). For this reassiandard parametric models may
have some theoretical advantages but they are abnewt sufficiently flexible to
represent real data adequately (Royston & LamBeit]).

An example of what can be gained with a suitableupatric model is predicting life
expectancy. National statistical agencies prodat®mal life table and estimate statistics
on period life expectancy by age and sex. Thesdhwreaverage number of additional
years a person would live if he or she would exqrene the age-specific mortality rates of
the given time period and area for the rest ofrthie. However death rates are not static
over time and therefore the period life expectaisayot the number of years someone in
the area in that time period is actually likelitee (Office for National Statistics, 2014).
The life expectancy is therefore estimated with apl€n-Meier type approach. Life
expectancy could be predicted with a parametrigigalr model. Unlike the Cox model,
extrapolation of survival estimates beyond the gtoioservation period is possible using
a parametric approach. Jackson et al. (2011) Haswrsthat this can be a useful option
when predicting life expectancy for people with taydibrosis disease. A well-fitted
parametric model could therefore be used to prdidiecexpectancy in a more accurate
way.

3 Flexible parametric models

Problems with the common poor fit of standard pataim survival models and the lack
of baseline hazard estimation in the Cox model Hastdo a new development. In 2002
Royston and Parmar published an article with neweld@ments on more flexible
parametric models. In the article they showed a w@yextend commonly known
parametric survival models so that the models wditldetter than the standard models
and still be able to model the baseline hazard. fitveble parametric models are
extensions of some of the standard parametric maated are fitted through the use of
restricted cubic splines.



3.1 Restricted cubic splines

Cubic splines are piecewise cubic polynomials ia thrm of y = B, + B1x + Box?* +
Bsx3 with a separate cubic polynomial fit in predefinedmber of intervals. The split
points of the intervals are known as knots. Thesgrictions are necessary so that the
fitted function will be smooth. The cubic functigforced to join at the knot locations,
making the function continuous. The first derivatiof the spline functions are also
forced to agree at the knots. Since the first @dfre is the gradient of the function it
should lead to smoother function to force the agexd at the knots. The last restriction
is to force the second derivative to agree at timskand since that represents the rate of
change in the gradient the function becomes eveyosrar. Cubic splines are the most
common type of splines used in practice and higlegree polynomials are generally not
needed. If there is a complicated shape betweets then further knots should be added
rather than fitting a higher degree polynomial (Roy & Lambert, 2011).

Let K represent number of knots lat < --- < ki for a nonlinear spline functios,(x),

for covariatex. Then
3 K
s(x) = Zﬁ()jxj + Zﬁis(x — k)3
=0 i=1

denotes a cubic spline function without continuégtriction, where

u ={u ifu>0
+ 0 ifu<o

The method of flexible parametric survival analysisdels with restricted cubic splines.
That indicates that the function is forced to Inedir before the first knot and after the last
knot. The first and last knots are defined as theimum and maximum of the
uncensored survival times and are known as boundauis. In order to fit a restricted
cubic spline function for a covariatg transformations af are included as new variables
in the linear predictor. Let(x) be the restricted cubic spline function with interior
knots, k4, ..., k,, in addition to the two boundary knots,,;,, andk,,,,. Thens(x) can be
written as a function of parameterand the newly created variablgs..., z,,,, 1,

s(x) =vo + V121 + V222 + * + Ym+1Zm+1

Thez; variables are calculated as follows

3
Zj = (x - kj)_,_ - Aj( mm)+ (1 Aj)(x - kmax)-3|-
where forj = 2,...,m + 1,

/1]. _ kmax - kj
kmax - kmin

The linearity restriction goes beyond the obserstath because the boundary knots are
the minimum and maximum event times. In the taflshe distribution, where data is
often sparse, restricted cubic splines tend to givee believable estimates. The function
of restricted cubic splines is programmed intoatéht software, including the various

Stata commands (Royston & Lambert, 2011).
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3.2 Thedifferent flexible parametric models

In 2002 Royston and Parmar introduced the flexijmeametric proportional-hazards
(PH) and proportional-odds (PO) models. The two emdre extensions of the Weibull
and loglogistic parametric models. Royston and Raralso mentioned the flexible
probit-scale model, an extension of the lognornabmetric model. These alternatives
extend the range of survival distributions that barestimated and today the PH, PO and
probit-scale models are still the only flexible gaetric models that have interpretable
covariate effects. It is assumed that the effectco¥ariates is proportional on the
appropriate scale, hazard, odds of failure or praibi failure probability, implying
linearity between certain transformation of thevswal function and the logarithm of
survival time. In the flexible parametric survivalodels the linearity restriction of the
transformed survival functiorin{(t)) is relaxed and nonlinear functions allowed (Rogst
& Lambert, 2011).

The basic Weibull model with covariate vectoand parameter vect@ can be written
as

In H(t|x) = In Hy(t) + XB =y, + v1Int + xB

The baseline cumulative hazard function can beneleg to a restricted cubic spline
function ofInt, In Hy(t) = s(Int;y). The extension of the Weibull model to a more
general PH model is then

In H(t|x) = In Hy(t) + xB = s(In t|y) + xB
where
s(Intly) =yo+viInt + y,z;(Int) + y3z,(Int) + -+

andInt, z;(Int), z,(Int) and so on, are the basis functions of the restrictubic
splines.

By exponentiating and differentiating with respéztt we get the hazard function and
then the log hazard function by taking the loganith

e = 8 eptsan eiy) + xp)
In h(t]x) = In {W} + s(In t]y) + xB

By evaluating the derivative (see Appendix A) ibdze seen that
Inh(t|x) = —Int +In(ys + v22; + - + VYm+1Zme1) + Vo + V171 + V22 + -

+Vm+1Zm+1 + XB

The proportional-hazard model is referred to asdphifodel whered represents the
degrees of freedom. A model had interior knots and whed >1, two boundary knots.
The Weibull model can therefore be referred to d$(1p but with different
parametrization (Royston & Lambert, 2011).
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The odds ratio (OR) is often used as an approximmet@sure of the change in risk of an
event, such as death, occurring in the presens®rok factor of interest. In 2x2 tables
OR is defined by

P1 D2

OR =
1-p/ 1—-p,

p; andp, here represent the proportion of individual witlest of interest in different
groups. Generalizing to the case where failure scuiith probabilitiesF; (t) andF,(t)
by timet > 0 and rotating we get

@) K@
1—F(t) 1-=F,(t)

OR(t)

If OR(t) is constant then the model has the assumptiornopioptional odds. That implies
that the odds of an event occurring up to titnare proportional across levels of the
covariate (Royston & Lambert, 2011).

The PO model can be generalized to the situatioarevindividuali has a covariate
vectorx; with parameter vectg®. Let OR; = exp(x;f), then

F(tlx;)  Fo(t)
1-F(tlx) 1—Fyt)

exp(x;8)

whereF,(t) = F(t|0) is the baseline distribution function afdt|x;) is the cumulative
distribution function at time t. Since  S(t|x;) =1 — F(t|x;) and
logit(x) = In{x/(1 — x)}, the PO model can be expressed as

logit{1 — S(t|x;)} = logit{1 — Sy, ()} + x;B (3.1)

The loglogistic model is a PO model with the baseburvival function

1,1

So(t) = |1+ {exp(=Bo)t}"
This can be expressed as

logit{1 — So(t)} = (—Bo +Int)/y =y, + y1Int

where y, = —fB,/y and y; = 1/y. The loglogistic model is an AFT model with
parameter vectg8* defined by

S(t|x;) = Solexp(—x;B")t}

giving
logit{1 — S(¢|x;)} = logit[1 — S, {exp(—x;8")t}]
= Yo + v1In{t exp(—x;B)}
=y, +yiInt —x;B"
Thus

logit{1 — S(¢t; x;)} = logit{1 — S,(t)} — x;B* (3.2)

12



By writing § = —B”* it can be seen that equations 3.1 and 3.2 ar¢icdéand therefore
the loglogistic model is a PO model with differg@atrametrization. The loglogistic model
can be extended to increase flexibility in a simikay as the Weibull model by using
spline functions o t.

logit{1 — S(t|x)} = logit{1 — S,(t)} + xB = s(Int]y) + xB

The logit of the baseline distribution functionnedeled as a restricted cubic spline in
Int. A proportional odds model is referred to as ®@¢hered represents the degrees of
freedom. A model hasl-1 interior knots and whed >1, two boundary knots. The
loglogistic model can therefore be referred to @1, but with different parametrization
(Royston & Lambert, 2011).

The lognormal survival model can be written as
Int=p0,+xp"+¢

wheree ~ N(0,02) is a normally distributed residual ahdt ~ N(B, + xB*,052). The
cumulative distribution and survival functionslaft are therefore

Fant) = o (LB 2P

S(nt) = 1 — F(Int) =cp(_1“t—lio—xﬁ*)

By writing B = —B* /0 and rotating we get

lnt_ﬁo
o

—d HS(nt)} = + xp

Whenx = 0 we get

—d71S,(Int)} = mt; Fo

Thus
—d HS(nt)} = —d H{S,(Int)} + xpB (3.3)

A model satisfying (3.3) can be described as aiprabdel on the survival-probability
scale. Probit is the inverse cumulative standananab distribution function. Ley, =
—po/0 andy,; = 1/0 then (2.7) becomes

- HS(nt)} =y, +y.Int + xB
This can be generalized to
—® YS(nt)} = s(nt|y) + xB

This models the probit of the baseline survivatribsition as restricted cubic splines and
is denoted by probit) with d > 1 degrees of freedom (Royston & Lambert, 2011).
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3.3 Number and position of knots

Restricted cubic splines withn interior knots and 2 boundary knots have been
introduced. As stated earlier the two boundary &reoe chosen to be the smallest and
largest uncensored log survival-times. The nextasis how to choose the position and
number of the interior knots. According to Roystamd Lambert (2011) optimal knot
positioning does not appear to be critical for adydit and can even be considered
undesirable. The fitted curve may then follow srsakle features of the data too closely
and knots will become additional model parametesglected data-driven. Royston and
Parmar (2002) suggested positioning the knots encemtiles of the distribution of
uncensored log event-times. If the model has oteziar knot it should be placed on the
50" centile, if there are three interior knots thegwdl be placed on the #550" and 7%’
centile, and so on. According to Royston and Lamn(@©11) a worthwhile improvement
in fit can be gained by using a spline model witkirgle interior knot (2 d.f.) over a
model with no knot (the standard parametric modéls)en little is gained by adding
further knots. They recommend spline models witlr23 degrees of freedom as a
reasonable initial or default choice for smalletadats. For larger datasets they suggest
looking informally at the AIC or BIC of models withetween 1 and 6 d.f. AIC is defined
to be the deviance plus a penalty of twice the remolb model parameters, BIC has a
more stringent criterion, a penaltylafn times the number of model parameters, where
is the number of events.

AIC = -2InL + 2k
BIC =—-2InL+klnn

The preferred model should be the one that minisni®6C or BIC but this criterion
should not be applied mechanically in the inteodgiarsimony and to reduce overfitting.
The aim is not necessarily to find an optimal fit lbather to capture the behavior of the
data. Note that the AIC and BIC cannot be compéretiveen a (flexible) parametric
model and the Cox model. The former is fit by maximlikelihood while the latter is fit
by maximum partial likelihood. Therefore are théues of AIC or BIC not comparable
(Royston & Lambert, 2011).

3.4 Parameter estimation through thelikelihood function

As already stated, there is a difference betweerfléxible parametric models and the
Cox model how the parameters are estimated. Then@mdel estimates the parameters
through partial maximum likelihood while the flelgb parametric models estimate
through full maximum likelihood like the standardrametric models do.

For the flexible parametric models we defifleas 1 for an observed event and O for a
right-censored observation. The sample compriseglependent observatiofs, §;, x; }
and the likelihood for théth observation id;. The likelihood for the whole sample is
then [, ;. The contribution of theth observation to the total log likelihood is
6;Inh(t;)) +InS(t;) —InS(ty;) wheret, represents a possible late entry. et=
s(Int;|y) + x;B and the first derivative

ni = ds(Int;|y)/dt; = t7 ' ds(Int;|y)/d(Int)).
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Also,

ds(nt;ly) i dz(inty)
d(int) =2”f d(Int,)

m
2
=71 + Z ]/] {3(1[1 ti - k])+ - 3&1(11’1 ti - kmin)%—
j=2

= 3(1=24)(nt; — knar)}}

For PH models the likelihood becomes

{nlf exp(n; — expn;) for an observed event,
i

exp(—expn;) for a censored observation.

The expression for the observed event is the deffisitction att; and the estimated
survival probability att; for the censored observation.

The parameters are estimated by maximum likelih&adtable starting values, to obtain
estimates ofy and f, are acquired by fitting a Cox model with the coatesx. The
survival function$(¢;|x;) is estimated from the Cox model as the baselingivsl
function att; raised to the power of the estimated relative tthzap(x;8). In the PH
model the initial guess ia{—In S(¢;|x;)} for In H(t;|x;). The starting values gfand B
are then determined by ordinary least-squares ssgne of these functions dn t;, x;
and the spline basis functions with the desiredlmemof knots. Full maximum likelihood
estimation is then performed (Royston & Lambertl, 20

3.5 Goodnessof fit

Measurements of explained variatioR?, are common in many fields of statistics.
Measurements of such are not so straight forwattarpresence of censored observation
as is common with survival analysis data. Seveuthas have proposed versions of
explained variation statistic for use with survidatta (Royston & Lambert, 2011).

Royston and Sauerbrei (2004) introduced Ehestatistic as a measure of variation in
outcome among individuals on the appropriate scalbere the D stands for
discrimination. The estimated prognostic indeg, is ordered as well as the rankits, the
expected normal order statistics correspondindpésd values calculated. The rankits are
then scaled by a factar = ,/8/m and an auxiliary regression performed on the scale
rankits. This ensures th& has the character of a log hazard ratio betweenleized
prognostic groups. The estimated regression caefics thenD. For D to be useful, the
prognostic index must be approximately normallytribsited. This is usually fulfilled by
the central limit theorem.

Royston and Sauerbrei (2004) then introdRgeas a transformation of th statistic.
RZ = D?/k?
D™ 62 4+ D2 /K2
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and

1 for models with a probit link
0% ={n?/3 for PO models
m2/6 for PH models and Cox model.

The R% andD statistics are by construction only sensitiveh® tanks ofxf and not its
actual values. A minor change in the model thavdeahe rank order unchanged does
therefor not affecR3 or D. This leads to robustness to outliers but theddisatage is
that the auxiliary model on the rankits may nottig data perfectly. This might result in
underestimation ak3 andD.

An alternative measure of discrimination is Hatgsettoncordance statistic. It measures
the agreement of predictions with observed failwaer and is defined as the proportion
of all usable subject pairs in which the predicsi@and outcomes are concordant, that is,
predict the same outcome as occurs (Cleves, &(0412; Royston & Lambert, 2011).

Measurement of calibrations is another common maeeformance characteristic of
prediction models. The Hosmer-Lemeshow (HL) goodra#dit test was developed to
estimate the calibration of logistic regression elsdHosmer & Lemeshow, 1980). Nam
and D’Agostino extended the HL test for survivataddut Demler, Paynter and Cook
(2015) have shown that the Nam-D’Agostino (ND) isstensitive for censoring and the
more censoring there is, the less stable the ta$$tec becomes. Demler et al. extended
the ND test statistic by using a different variamstimator. In the original ND test a
binary proportion estimator was used as a measunteofiehe variance and that does not
account for censoring or for time of event. Dendeal. proposed using the Greenwood
formula for the variance of failure probability tead. The Greenwood variance estimator
of the Kaplan-Meier failure probability in thgth decile of risk scores at tintg KM, (t)

is:

d;

var (ki (©)) = KMy@7 ) ——Cs

i|tist

Where, as previously stated], andn; represent the number of events and number at risk
at timet;. The test statistic proposed by Demler et al.,Gineenwood-Nam-D’Agostino
(GND) is:
G _—
VIR ol LR TGN N
Xenp(8) = Z ~ X6-1
“ var (KMg(t))

The term(p(t)g) represents the mean predicted probability of faifior subjects in the
gth decile. The numerator therefore represents guared difference of observed and
expected failures. In a simulation study Demlealetested the performance of the GND
test for variety of situations, with censoring satd 25% and 50%, event rates of 0,05,
0,1 and 0,4 and for decreasing, increasing andtaoin®aseline hazard. In all these
situations the performance of the test was good.
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4 Application tothe AGES Data

4.1 The AGESstudy

In 1967 a cohort was established for a study ofliosascular disease in Iceland, The
Reykjavik study. The cohort comprised all men ami&n in the Reykjavik area born in

1907-1935. The cohort was randomly divided into gri@ups and the sample examined
comprised all groups except one, total of 26.4&0Bviduals. In 2002 11.549 previously

examined Reykjavik study cohort members were alile. A random sample of 8.000

surviving participants of the Reykjavik study wasvited to participate in The Age

Gene/Environment Susceptibility - Reykjavik StudyGES) between 2002 and 2006.
5.764 participated (Harris, et al., 2007). Inforimaton the variables used in the current
study is available for all the 11.549 surviving tpapants through the registries of

Statistics Iceland and will therefore be used.

4.2 Variables
The variables used in this study are the follonongs:

* Agebegin02: Age in the year 2002 measured as intege

» Lifetime: Age at death.

e Fu02y: Length of follow-up. Calculated as the difiece between lifetime and
agebegin02. Follow-up ended in the end of 2013.

» Death: Indicator variable where 1 represents eardtO represents censoring.

* Sex: Sex of the participants. 1 represents maldagrpresents females.

Tables 4.1 and 4.2 show the descriptive statifbicthe variables in the dataset.

Table4.1. Descriptive statistics of the continuous variables.

Agein 2002 Lifetime  Follow-up

Min 66 66,19 0,0082
Max 96 103,82 11,80
Mean 75,97 84,59 8,62
Sd 6,53 5,71 3,85
Median 75 84,31 10,96

Table 4.2. Descriptive statistics of the categorical variables.
Variable Category n Proportion

Sex Male 4791 0,42
Female 6746 0,58

Death Event 6180 0,54
Censored 5357 0,46

4.3 Dataanalysis

When investigating the data on the 11.549 partidgpat was observed that 12
participants had lifetimes that were equal or ghotthan their age in the year of 2002.
According to that they should not have been aliyeth®e beginning of the study. The
reason for this is that at a certain time interivalthe 2" century it happened that
personal numbers of diseased individuals were ceubeneeded. Therefore is the
information on these 12 individuals not correct.e3@& individuals were therefore
removed from the dataset, which then consists &3lindividuals.
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Most data analysis in this study is performed witle data analysis and statistical
software Stata 12. Currently it is the only statedtsoftware that can perform an analysis
of flexible parametric survival models. The modppked in this study will include the
age in the year of 2002 and sex as explanatorabas and the length of follow-up as
dependent variable. A SAS macro is used to testalibration of the model (Demler, et
al., 2015).

The critical p-value used in the significance tedtthe data is 0,05.

5 Results
In Table 5.1 the age variable has been dividedsm@ge groups, all with a range of five
years per group except for the first group whiatgess from 66-71 or six years.

Tableb5.1. Event and deaths per 1.000 person-year s per sex and age group.

Sex Age Death Censored Proportion  Proportion S;rssgf 1%83t22r§n-
Death Censored follow-up years
Male 66-71 471 997 0,32 0,68 14875,51 31,66
72-76 658 649 0,50 0,50 11962,02 55,01
77-81 821 291 0,74 0,26 8144,68 100,80
82-86 559 48 0,92 0,08 3361,66 166,29
8791 248 4 0,98 0,02 980,98 252,81
92-96 45 0 1,00 0,00 125,48 358,63
Female 66-71 478 1521 0,24 0,76 21330,28 22,41
72-76 645 1085 0,37 0,63 17145,17 37,62
77-81 919 576 0,61 0,39 12605,50 72,90
82-86 796 163 0,83 0,17 6327,58 125,80
8791 447 23 0,95 0,05 2167,33 206,24
92-96 93 0 1,00 0,00 346,39 268,48
Total 6180 5357 0,54 0,46 99372,58 62,19

As can be seen there is a considerable differanpeojportions that experience the event
between the age groups going from 0,32 up to Infales and from 0,24 up to 1 for
females. There is a difference between the sexeglsn all age groups except for the
last one where everyone experiences the eventdifleeence between the sexes ranges
from 3-13 percentage points in the other age groDpaths per 1.000 person-years also
vary between the sexes and the different age gravdakes have more deaths per 1.000
person-years in all age groups compared with fesnalkhere the group of males
experiences between 23-46 percent more deaths@@0 ferson-years than the group of
females. As would be expected, increasing numbedeaths are observed per 1.000
person-years with each age group.

Figure 5.1 shows the Kaplan Meier estimates ofstheival functions between different
levels of the covariates. Log Rank test of the gtyuaver the different levels of the sex
variable is significant with a p-value < 0,0001 anis also significant over the different
ages with a p-value < 0,0001. When the equalitgssed over the different combinations
of sex and age the p-value is < 0,0001. Theretarzan be stated that there is a difference
in survival between sex and age.
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Figure5.1. KM estimates of the survival functions of the sexes and at the age of 70, 80 and 90.

5.1 Selection of model

In Table 5.2 a comparison in AIC and BIC statistissshown between the different
flexible parametric models with 0-5 interior kndis6 df). As mentioned earlier PH(1) is
the Weibull model, PO(1) is the loglogistic modabaProbit(1) is the lognormal model.
PH(4) has the lowest AIC value and PH(3) has teetd BIC value. The difference in
AIC between PH(3) and PH(4) is 0,75 but the diffiee=in BIC is 6,6. On the grounds of
parsimony the preferred model here is PH(3).

Table5.2. AIC and BIC statisticsfor the different models. 24.600 is subtracted from all the values.
PH PO Probit
df AlIC BIC AlIC BIC AlIC BIC

274,75 304,16 847,24 874,16 1763,31790,23

83,09 119,86 394,52 428,17 629,96 663,60

47,22 91,34 281,06 321,44 462,73 503,10
46,47 97,94 27591 323,01 453,00 500,10

47,15 105,98 274,03 327,87 448,58 502,41
49,17 115,35 275,57 336,13 449,31 509,88

OO0 WNBE

Table 5.3 contains a comparison in parameter ewsnlaetween PH models with 1-6
degrees of freedom and parameter estimates fronCtixemodel. As can be seen the
parameter estimate for agg,) is the same for the Cox model and PH models \hitbet
or more degrees of freedom and the parameter dstifmasex(s,) is almost the same
for the Cox model and PH models with three or niegrees of freedom. This further
strengthens the choice of the PH(3) model.
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Table5.3. Parameter estimation of age and sex in PH models with 1-6 df and the Cox moddl.

M odel B4 Se(B4) B Se(B2)
Weibull 1,1288 0,0023 0,7133 0,0183
PH (2) 1,1323 0,0023 0,7077 0,0182
PH (3) 1,1334 0,0023 0,7064 0,0182
PH (4) 1,1334 0,0023 0,7063 0,0181
PH (5) 1,1334 0,0023 0,7063 0,0181
PH (6) 1,1334 0,0023 0,7063 0,1810
Cox 1,1334 0,0023 0,7063 0,0181

As the name indicates, one of the assumptions ohfeldels is that the effects of the

covariates are proportional between their levels.tdst if the age and sex variables
violate the assumption of proportional hazard & besed on Schoenfeld residuals was
conducted. The resulting p-value for the sex végiakas 0,5801 and for the age variable
0,8982. Therefore, no evidence is found that thealkes violate the PH assumption. In

Figure 5.2 the smoothed hazard estimates of mal@édeamales can be seen. The figure
reveals that the PH assumption of males and fensabgspropriate.
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Figure 5.2. Smoothed hazar d estimates for males and females.

Table 5.4 compares the explained variation andrichgtation statistics between the PH
models. As can be seen there is no improvemeitieimiodel by including more than two
interior knots (3 df.). The variation in events idgrthe follow-up time explained by age
and sex in PH(3) is 0,313. The choice of the PHii8del as the preferred parametric
model is now apparent. Henceforth it will be thexible parametric model used in the
analysis.
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Table5.4. R? and discrimination statistics for PH models with 1-6 degrees of freedom.

Degr ees of freedom
Statistic 1 2 3 4 5 6
R 0,299 0,310 0,313 0,313 0,313 0,313
D 1,338 1,372 1,382 1,382 1,382 1,382

Harrell's C is representing the proportion of alable subject pairs in which the
predictions and outcomes are concordant is 0,7081 for the PH(3) model and the Cox
model.

Table5.5. y2,p testsfor the three moedels
Statistic ~ Weibull PH(3) Cox
X%ND 17,80 12,41 12,41
P-value 0,04 0,19 0,19

The Greenwood-Nam-D’Agostino test is insignificioth for the PH(3) model and for
the Cox model. That means that there is no indinathat these two models lack in
calibration. The Weibull model, on the other hatedts significant, indicating differences
between predicted and observed events.

5.2 Comparisons

In Figures 5.3, 5.4 and 5.5 the survival functitthg cumulative hazard function and the
hazard function, respectively, are compared betwhkenWeibull model and the PH(3)

model. These are plotted with what is seen in #ta through the Kaplan Meier, Nelson
Aalen or kernel smoothed Nelson Aalen functionenglwith 95% confidence interval.

All the figures show how the PH(3) model captutes behavior of the data better than
the Weibull model. In Figures 5.3 and 5.4 the WEilkunction lies partly outside the

95% CI and in Figure 5.5 it does not capture tigbtrshape. The plotted functions for
males and females separately indicate the sameaamble found in Appendix B.
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Figure5.3. Kaplan-M eier estimator of the survival function for the population with 95% CI (shading) compared
with estimates from the Weibull and PH(3) models.
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Figure 5.4. Nelson-Aelen estimator of the cumulative hazard function for the population with 95% CI (shading)
compar ed with estimates from the Weibull and PH(3) models.

22



0.12
KS Hazard
Weibull
0.101| ——— PH(3)
5
5 0.08
c
=]
IS
<
& 0.06-
T
0.04
0.02
T T T T T T T
0 2 4 6 8 10 12

Years of follow-up

Figure 5.5. Kernel smoothed Nelson-Aalen estimator of the hazard function for the population with 95% CI
(shading) compared with estimates from the Weibull and PH(3) models.

08— 6671 107
— 7276
0.8
5 5 061
S e
E 2
T T
T @ 0.4
0.2
0.0
T T T T T T T T T T T T T T
0o 2 4 6 8 10 12 o 2 4 6 8 10 12

Years of follow-up
Figure 5.6. Hazard and survival functionsfor the different age groups estimated with PH(3) model.

To visualize the effect of age on survival and hdzhe data was divided into six age
groups. When we look at the hazard function in Fedn6 it can be seen that the hazard
does not vary much for the youngest age group tiralie follow-up time but the change
for the older groups is considerable. Substantitierénce can also be seen for the
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different age groups when the survival functiorexamined. The oldest age group has
estimated survival of almost zero in the end olofgtup while the youngest age groups
estimated survival is above 0,70.

In Figure 5.7 a comparison between males and fentale be seen. The hazard for males
is considerably higher than for females through whmle follow-up time and is in the
end of follow-up around 0,10 compared with arour@B@dor females. Looking at the plot
of the survival function it can be seen that mélage poorer prognostics of survival than
females. In the end of follow-up their estimatedvstal is around 0,4 compared with
around 0,5 for females.
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Figure5.7. Hazard and survival functionsfor the males and females estimated with PH(3) model.
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Figure 5.8. Hazard Ratio as a function of age with 95% CI. Age 80 isthereferencelevel.

Figure 5.8 shows the hazard ratio as a functicagef Age 80 is set as the reference level
and has therefore the value of 1. The confidentaval gets larger with higher age and
that results from fewer observations. Individuaiseeing the AGES study at age 96 have
over five times the hazard of experiencing the ewempared with individuals entering
the study at age 80.

5.3 Predictions
Figures 5.9-5.11 show some predictions that carddree by the flexible parametric
models.

Figure 5.9 shows the extrapolation of the Weibultl #H(3) survival curves predicted

only with data up to eight years of follow-up. Tiesl line is the actual KM estimate until

to end of follow-up. Here the predictions until éad of follow-up can be compared

between the KM, Weibull and PH(3) estimates. Wlaat lse seen in the Figure is that the
Weibull estimate follows the observed data wellilugight years but overestimates the
survival after that time. The PH(3) estimate ofvawal, on the other hand, follows the

observed data well until the end of follow-up. TRE(3) model predicts more closely

what happens after the eight year follow-up althowugpat happens with the data beyond
the 11,8 years of actual follow-up is not known.
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Figure 5.9. Extrapolation of survival curvesup to 20 years.
0.12
KS hazard
Weibull
PH(3)
0.08
0.04
0.00
T T T T T
0 4 8 12 16 20

Figure 5.10. Extrapolation of the hazard function up to 20 years. The shaded area isthe 95% CI for the Kernel
smoothed hazard function.

Figure 5.10 shows the extrapolation of the Weibualll PH(3) hazard functions predicted
with data up to eight years of follow-up. As withetpredicted survival curve, the PH(3)
estimate follows the observed hazard better thanVeibull estimate, both before the
end of the eight year follow-up and beyond thanpdiowever there might be some hint
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that the PH(3) estimates is starting to part frow dbserved data by the end of the 11,8
years. It is nevertheless still within the confidernterval of the observed data.

In Figure 5.11 the mean predicted remaining suhvivae can be seen predicted by the
PH(3) model for 10, 20, 30 and 40 years. The meadigted survival time for the oldest
people is around two years in all the figures andoes not make a difference if the
predictions are done for the next 10 or 40 yeaherd is a difference in all the graphs
between males and females as would be expectethantiean predicted survival time
shortens with age, also as expected.
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Figure 5.11. Mean predicted survival for 10, 20, 30 and 40 years by age and sex from PH(3). Solid line for males
and dash/dot linefor females.

5.4 Comparison to official estimations

Statistics Iceland (2014) produces national pelifedables and estimates life expectancy
by age and sex. In Figure 5.12 the official estematre compared with the mean
remaining survival time estimates from the PH(3)delo The population estimated by
Statistics Iceland is people aged 66-94 in thesy2801-2005 but the data for the PH(3)
model is people from the AGES database, aged 66i9he year 2002. There is
considerable difference in the predictions betwdsn estimates for the younger age
groups, where the PH(3) model predicts longer reimgi mean survival time for the
AGES population than Statistics Iceland does fer Itelandic population. After age 80
the estimates of the AGES data modeled with PH{Bewell with the period table from
Statistics Iceland, although it seems to estimaégatly shorter survival time.
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Figure 5.12. Mean predicted survival times compared between official estimates of Statistics Iceland and
estimates from the PH(3) modél.

The predictions from the PH(3) model can also beedeith time restrictions. Instead of

unrestricted as in Figure 5.12. In Figure 5.13 jmtezhs have been restricted to 20, 25
and 30 years and plotted with the official estirat®m Statistics Iceland. As can be
seen the closest fit for the younger age groupsisde be between restrictions of 20 and
25 years.
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Figure5.13. Mean predicted survival times compared between official estimates of Statistics I celand and
estimates from the PH(3) modé restricted on 20, 25 and 30 years.
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6 Discussion and Concluding Remarks

This paper is a modest contribution to the ongaiiggussion about the possibilities
available to model survival data. The main purpotehe paper was to evaluate the
different methods of survival analysis and applytite given data. The goal was to
estimate if there would be a considerable improvenrefit of the data by modeling with

a flexible parametric model instead of a standametric model. The optimal model
should have hazard ratio estimates in agreemeht tht estimates from the Cox model
and additionally the characteristics of parametnicdels. In that way the aim was to
explore if the data could be modeled in a way thatild combine the best of the two
standard modeling techniques.

The results indicate that the best parametric mfwmdhe data is the flexible proportional
hazard model with three degrees of freedom, PH{3t model has two internal knots in
the spline function. The AIC and BIC for the flebdbmodel of choice indicated a much
better fit than the standard Weibull model. Modglthe survival, hazard and cumulative
hazard functions of both the Weibull model and Bt#(3) model and comparing the
plotted functions to the actual observed data mtéit that the PH(3) model fits the data
better than the Weibull model. Even the hazard tian¢ that has usually been found to
be less stable and harder to estimate, seems mdoagpzopriately by the PH(3) model
while the Weibull hazard estimate has a differémapge. The observed data and the
different predicted functions from PH(3) theref@gree very well. The generally close
agreement can be seen as crude confirmation obd gmdel fit. Figures 5.9 and 5.10
show that when modeling the data with informatidnonly 8 years of follow-up and
predicting beyond that point, the PH(3) model isbetter agreement than the Weibull
model, with what can be seen from the data urgilethd of real follow-up.

The comparison of the PH(3) model and the Cox mizdelore difficult, since there is no
direct way of evaluation. The Harrel's C, repregenthe proportion of all usable subject
pairs in which the predictions and outcomes am@gmeement is the same for both models.
The chi-square test of calibration also shows tl@h models fit the data well. Both
models seem to be suitable. The main argument Hobging the flexible parametric
model over the Cox model lies in what featuresRRE3) model contains additionally to
the Cox model, mainly in the area of predictionse Thain difference of the two models
is that the flexible parametric model estimates Haseline hazard while the Cox
modeling technique leaves it out as nuisance faetwd therefore predictions are easier
and more accurately obtained by the flexible patammodel.

The comparison of the predicted life expectancyben the official estimates of the
Icelandic population from Statistics Iceland ané #H(3) predictions for the AGES
population show that for the younger age groupsutrestricted PH(3) predicts much
longer survival than Statistics Iceland does. interesting to see this difference but the
dissimilarities in both populations and methods hesconsidered. It might be possible
that the AGES population is in a better physicahpgh than the average Icelandic
population since only people fit enough to come dgamination was included in the
AGES database. It must also be kept in mind thafdhow-up time is only around 11,8
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years and therefore it might be questionable tdiptesurvival for many decades. Figure
5.13 shows predictions restricted to 20, 25 andy@s and the best fit seems to be
between 20 and 25 years. What happens for thispgmouhe future is though still
unknown.

The main limitation of this study is that the malakve not been validated externally,
that is, the model fitted to the given data hashesn applied to other data to assess the
fit. The fit has only been examined within the mlededata. The question of external
model fit is thus unanswered.

The flexible proportional hazard model appliedhiststudy showed a good internal fit of
the given data. This is consistent with findingshbof the researchers that developed the
model and others that have applied it (Royston &faa, 2002; Lambert & Royston,
2009; Royston & Lambert, 2011; Andersson, 2013;wEner & Lambert, 2014). The
hazard function of the data in this study was rfoparticularly complicated shape and
still there was a considerable improvement in fihvihe PH(3) model compared with the
Weibull. The data included information on almostykEars of follow-up for people aged
66-96 in the beginning of the study. For peopld dge, not controlling for any special
medical condition, the hazard should be monitohicedcreasing along the follow-up
time, since people are getting older. In many medditata the hazard function can be
much more complicated where patients are e.g. inhnhazard before and around the
time of surgery, then if surgery is successful tfagard decreases but might increase
again if there is a risk of recurrence. More immoent of modeling data with multi-
modal hazard functions should therefore be expeasttdthe flexible parametric models
compared with the standard ones.

In the case of the data modeled in this study fhy@apriate scale to model on is the
proportional hazard. That is not true for all datel some data are better modeled under
the assumption of proportional odds or the prolsguanption (Royston & Lambert,
2011). In that case there is no other model egemtab the Cox model for proportional
hazard to be compared with. The advantage of kablegyto model flexibly with splines is
then apparent, since the only real competitordlaestandard parametric models, known
for a frequent lack of fit.

The lack of tools for direct comparison between@uox model and the flexible PH model
is unforunately evident, at least at the momenipéfially research will continue on that
field as flexible parametric modeling will becomem common.

Hjort said in 1992 that an adequate parametricimersf the Cox model would lead to
more precise estimation of survival probabilitiesl @ontribute to a better understanding
of the phenomenon under study. It looks like tlegifile parametric hazard model might
be the answer to his request. Based on the resfuliss paper it can be concluded that in
the case of the data from the AGES study the Phi(8jel fits the data at least as good as
the Cox model and additionally offers the valuapledicting features of parametric
modeling.
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Appendix A: Deriving the In(hazard) function in flexible parametric
modeling

From (Royston & Lambert, 2011).

Given the hazard function and the log hazard fancti

ds(Int
h(t|x) = %exp{s(ln tly) + xB}
ds(Int|y)
In h(t]x) = In —ar + s(In t]y) + xB
Evaluating the derivative
ds(Intly) d
T = Ilnt (Yo + 121 + V222 + - + Yms1Zms1)

dz,(Int) dzy,+1(Int)
=VitVe o Tt Ym0

Given thatforj =2,... , m+1
3
zi(lnt) = (Int — kj)+ —A4i(nt — k)3 — (1= 2)(Ant — kpay)}
Then

dZ]'
dint

=2/ =3(Int — k). —34(nt — kpi)? — 3(1 = 2,) At — kypg)3

Finally
Inh(t|x) = —Int +In(y; +¥22; + - + Ym+1Zm+1) + Yo + V121 +V2zy + -

+Vm+1Zm+1 + Xﬂ
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Appendix B: Comparison of functions between the Welbull and

PH (3) for males and females separ ately
Males

Survival function

0 2 4 6 8 10 12
Years of follow-up

Figure B.1 Kaplan-Meier estimator of the survival function for males with 95% CI (shading) compared with
estimates from the Weibull and PH(3) models.
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Figure B.2 Nelson-Aelen estimator of the cumulative hazard function for males with 95% CI (shading)
compar ed with estimates from the Weibull and PH(3) models.
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Figure B.3 Kernel smoothed Nelson-Aalen estimator of the hazard function for males with 95% CI (shading)
compar ed with estimates from the Weibull and PH(3) models.
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Figure B.4 Kaplan-Meier estimator of the survival function for females with 95% CI (shading) compared with
estimates from the Weibull and PH(3) models.
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Figure B.5 Nelson-Aelen estimator of the cumulative hazard function for females with 95% CI (shading)
compar ed with estimates from the Weibull and PH(3) models.
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Figure B.6 Kernd smoothed Nelson-Aalen estimator of the hazard function for females with 95% CI (shading)
compar ed with estimates from the Weibull and PH(3) models.
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Appendix C: Stata codes

clear

/l Import data //

use "C:\Users\siggigusti\Dropbox\Master\Stata\dati@?, clear
destring, replace

/I Set dependent variable and censor variable //

stset fu02y, failure(death==1)

/I Information for Table 4.1 //
summarize agebegin02 lifetime fu02y, detail

/I Information for Table 4.2 //
by sex, sort : inspect sex
by death, sort : inspect death

/I Information for Table 5.1 //

// Recode age into groups //
recode agebegin02 (min/71=0)(72/76=1)(77/81=2)@28(87/91=4) (92/max=5), gen(age_groups)

by sex age_groups, sort : summarize death if dedthdetail
by sex age_groups, sort : summarize death if de@thdetail

total fu02y, over(sex age_groups)

/l Figure 5.1 //

sts generate sf=s if(sex==2)

sts generate sm=s if(sex==1)

line sm sf _t, sort Ipattern(l ~_ _.) lwidth(meadtki..) legend(label (1 "Males") label(2 "Femalegtjg(0)
pos(1) col(1)) xlabel(0 (2) 12) xscale(r(0 12)) thtf"Survival function™) xtitle("™) yla(, angle(h)
format(%5.1f)) name(g1,replace)

sts generate s70=s if(agebegin02==70)

sts generate s80=s if(agebegin02==80)

sts generate s90=s if(agebegin02==90)

line s70 s80 s90 _t, sort Ipattern(l "_ _.) Iwidtiedthick ..) legend(label (1 "70") label(2 "80"p&i(3 "90")
ring(0) pos(1) col(1)) xlabel(0 (2) 12) xscale(r1@)) vtitle("Survival function") xtitle("™") yla(, agle(h)
format(%5.1f)) name(g2,replace)

graph combine g1 g2, b2title("Years of follow-up")

sum agebegin02, meanonly
gen agec = agebegin02-r(mean)

/I Log Rank tests //
sts test sex

sts test agec

sts test agec sex

// Table 5.2 //
foreach scale in hazard odds normal{
display _n "Scale = "scale™
forvalues j=1/6{
quietly xi:stpm2 i.sex agec, df(’j") scale('s¢ale
display "df = 7', AIC = "%13.7f e(AIC) " BIC = %13.7f e(BIC)
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/l Table 5.3 //

stpm2 agec i.sex, scale(hazard) df(1) eform nolog
stpm2 agec i.sex, scale(hazard) df(2) eform nolog
stpm2 agec i.sex, scale(hazard) df(3) eform nolog
stpm2 agec i.sex, scale(hazard) df(4) eform nolog
stpm2 agec i.sex, scale(hazard) df(5) eform nolog
stpm2 agec i.sex, scale(hazard) df(6) eform nolog
stcox agec i.sex, nolog

/I Check PH assumptions //
stcox agec i.sex
estat phtest, detail

/I Figure 5.2 //

sts graph, hazard by(sex) noboundary yscale(loggné(label (1 "Males") label(2 "Females") ring(0)
pos(10) col(1)) xlabel(0 (2) 12) xscale(r(0 12)itlg{"Smoothed hazard function") xtitle("Years @flbw-
up") yla(, angle(h) format(%7.2f)) title("") name{geplace)

/l Table 5.4 //
foreach scale in hazard{
display _n "Scale = “scale™
forvalues j=1/6{
xi:str2d: stpm2 i.sex agec, df(‘j') scale("sqale’
}

}

/I Harrell's C //

stpm2 agec i.sex, scale(hazard) df(3) nolog
stcstat2

stcox agec sex
estat concordance

/l Table 5.5 //

/I PH(3) //

clear

use "C:\Users\siggigusti\Dropbox\Master\Stata\daita?, clear
destring, replace

/I Set dependent variable and censor variable //

stset fu02y, failure(death==1)

sum agebegin02, meanonly

gen agec = agebegin02-r(mean)

stpm2 i.sex agec, scale(hazard) df(3)
replace _t=11

predict xb, xbnobaseline

predict failure, failure

/I Cox /I

clear

use "C:\Users\siggigusti\Dropbox\Master\Stata\daita2, clear
destring, replace

/I Set dependent variable and censor variable //

stset fu02y, failure(death==1)

sum agebegin02, meanonly
gen agec = agebegin02-r(mean)
stcox i.sex agec

predict xb, xb

su xb
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predict sa, basesurv

genstll =saif _t>10.99 & t<=11

sum stl11, meanonly

replace stll = r(mean)

gen sall = stl1”exp(xb)

gen failure = 1-sall

label var sall "stcox prediction at time 11"
label var failure "risk prediction at time 11"

Il Weibull //

clear

use "C:\Users\siggigusti\Dropbox\Master\Stata\dati@?, clear
destring, replace

/I Set dependent variable and censor variable //

stset fu02y, failure(death==1)

sum agebegin02, meanonly

gen agec = agebegin02-r(mean)

stpm2 i.sex agec, scale(hazard) df(1)
replace t=11

predict xb, xbnobaseline

predict failure, failure

/I Figures 5.3 -5.5//

I Hazard(3) //

stpm2, scale(hazard) df(3) eform
predict H, cumhazard

predict S, survival

predict h, hazard

I Weibull //

stpm2, scale(hazard) df(1) eform
predict HW, cumhazard

predict SW, survival

predict hW, hazard

/IKM Survival//

sts generate ss=s

sts generate sse=se(s)

generate lo = ss - 1.96*sse

generate hi = ss + 1.96*sse

/INA Cumhaz//

sts generate hh=na

sts generate hhse=se(na)

generate lohh = hh - 1.96*hhse

generate hihh = hh + 1.96*hhse

/IKS Hazard//

sts graph, hazard ci kernel(epan2) outfile(hazacs)
append using "C:\Users\siggigusti\Dropbox\Mastat&haz.dta"
generate loh=hazard-1.96*sqrt(Vhazard)
generate hih=hazard+1.96*sqrt(Vhazard)

IIPlots//

twoway(rarea lo hi _t, pstyle(ci) sort) line ss SN t, sort Ipattern(l *_ _.) lwidth(medthick ..pknd(label
(2 ") label(2 "KM") label(3 "Weibull") label(4 "PKB)") ring(0) pos(1) col(1)) ytitle("Survival funicn™)
xtitle("Years of follow-up") xlabel(0 (2) 12) xsezr(0 12)) yla(, angle(h) format(%5.1f)) name(ggleee)
twoway(rarea lohh hihh _t, pstyle(ci) sort) line W H _t, sort Ipattern(l ~_ _.) Iwidth(medthick) ..
legend(label (1 "95% CI") label(2 "NA") label(3 "Wll") label(4 "PH(3)") ring(0) pos(10) col(1))
ytitle("Cumulative hazard function™) xtitle("Yearsf follow-up") xlabel(0 (2) 12) xscale(r(0 12)) yla
angle(h) format(%5.1f)) name(g4,replace)
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twoway(rarea loh hih _t, pstyle(ci) sort) line hezdaW h _t, sort Ipattern(l “_ _.) Iwidth(medthicR
legend(label (1 "95% CI") label(2 "KS Hazard") 1&8¢"Weibull") label(4 "PH(3)") ring(0) pos(10) cd))
ytitle("Hazard function") xtitle("Years of followql') xlabel(0 (2) 12) xscale(r(0 12)) yla(, angle(h)
format(%5.2f)) name(g3,replace)

/I Figure 5.6 //

stpm2 i.age_groups, scale(hazard) df(3) eform

predict SO, survival if(age_group==0)

predict S1, survival if(age_group==1)

predict S2, survival if(age_group==2)

predict S3, survival if(age_group==3)

predict S4, survival if(age_group==4)

predict S5, survival if(age_group==>5)

predict h0, hazard if(age_group==0)

predict hl, hazard if(age_group==1)

predict h2, hazard if(age_group==2)

predict h3, hazard if(age_group==3)

predict h4, hazard if(age_group==4)

predict h5, hazard if(age_group==5)

/[Survival functions of different age groups //

line SO S1 S2 S3 S4 S5 _t, sort Ipattern(l *_ widith(medthick ..) legend(off) ytitle("Survival fution")
xtitle("") xlabel(0 (2) 12) xscale(r(0 12)) yla(ngle(h) format(%5.1f)) name(ggl,replace)

/[Hazard functins of males and females//

line h0 hl h2 h3 h4 h5 _t, sort Ipattern(l *_ width(medthick ..) legend(label (1 "66-71") label@2-76")
label(3 "77-81") label(4 "82-86") label(5 "87-911gbel(6 "92-96") ring(0) pos(10) col(1)) vtitle("Hard
function") xtitle("") xlabel(0 (2) 12) xscale(r(®)) yla(, angle(h) format(%5.1f)) name(gg2,replace)
/ICombine//

graph combine gg2 ggl, b2title("Years of follow-up"

/I Figure 5.7 //

stpm2 i.sex , scale(hazard) df(3) eform

predict Sm, survival if(sex==1)

predict Sf, survival if(sex==2)

predict hm, hazard if(sex==1)

predict hf, hazard if(sex==2)

/[Survival functions of males and females//

line Sm Sf _t, sort Ipattern(l “_ _.) Iwidth(medtki..) legend(label (1 "Male") label(2 "Female")ng(0)
pos(1) col(1)) ytitle("Survival function") xtitle(’) xlabel(0 (2) 12) xscale(r(0 12)) yla(, angle(h)
format(%5.1f)) name(ggl,replace)

/[Hazard functions of males and females//

line hm hf _t, sort Ipattern(l ~_ _.) Iwidth(medtki..) legend(label (1 "Male") label(2 "Female")ng(0)
pos(10) col(1)) vytitle("Hazard function") xtitle()'" xlabel(0 (2) 12) xscale(r(0 12)) yla(, angle(h)
format(%5.2f)) name(gg2,replace)

/[Combine//

graph combine gg2 ggl, b2title("Years of follow-up"

/I Figure 5.8 //

rcsgen agebegin02, df(6) gen(agercs) orthog

global ageknots “r(knots)'

matrix R=r(R)

stpm2 agercsl-agercs6, scale(hazard) df(3) notognef

generate refage=80 in 1

rcsgen refage in 1, knots($ageknots) gen(ragemusiyix(R)
local cl=ragercsl1[1]

local c2=ragercs2[1]

local c3=ragercs3[1]

local c4=ragercs4[1]

local c5=ragercs5[1]

local c6=ragercs6[1]
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predict hr, hrnumerator(agercsl . agercs2 . agerag@rcs4 . agercs5 . agercs6 .) hrdenominatndsd
‘c1' agercs2 "c2' agercs3 "c3' agercs4 ‘c4' agerbsagercs6 "c6') Ci

twoway (rarea hr_lIci hr_uci agebegin02, pstylegaipt) (line hr agebegin02, sort Istyle(reflinepstyle(p2
..)), leg(off) ytitle("Hazard ratio") xtitle("Refence age=80") xlabel(65 (5) 95) xscale(r(65 96gby|
angle(h) format(%4.0f)) name(g2, replace)

//[Figure 5.9//

clear

use "C:\Users\siggigusti\Dropbox\Master\Stata\dati@?, clear
destring, replace

stset fu02y, failure(death==1) exit(time 8)

range timev 0 20 21

//Predict up to 20 years //
stpm2, scale(hazard) df(3)
predict s_hazard_3, survival timevar(timev)

stpm2, scale(hazard) df(1)
predict s_hazard_1, survival timevar(timev)

/I Get Kaplan-Meier up to 20 years
stset fu02y, failure(death==1)
stsgens_kap=s

sts generate sse=se(s)

generate lo = ss - 1.96*sse
generate hi = ss + 1.96*sse

/I Plot //

twoway (line s _kap _t, c(J) sort Iwidth(medthick))(line s hazard 1 s hazard 3 timev, sort
Iwidth(medthick ..)), xline(8) ylabel(0(0.25)1, da¢h) format(%4.2f)) xlabel(0(4)20) xtitle("Yearsf o
follow-up") ytitle("Survival function") legend(labl "KM") label(2 "Weibull") label(3 "PH(3)") ringd)
pos(1) col(1)) name(gl, replace)

/[Figure 5.10 - hazard//

//Predict up to 20 years //

stpm2, scale(hazard) df(3)

predict h_hazard_3, hazard timevar(timev)

stpm2, scale(hazard) df(1)
predict h_hazard_1, hazard timevar(timev)

/I Get Nelson-Aelen up to 20 years

stset fu02y, failure(death==1)

sts graph, hazard ci kernel(epan2) outfile(hazacs)
append using "C:\Users\siggigusti\Dropbox\Mastexr\titz"
generate loh=hazard-1.96*sqrt(Vhazard)

generate hih=hazard+1.96*sqrt(Vhazard)

/lplot

twoway (rarea loh hih _t, pstyle(ci) sort)(line haad _t, c(J) sort)(line h_hazard_1 h_hazard_3 tjreext),
xline(8) ylabel(0(0.04)0.12, angle(h) format(%4)28)abel(0(4)20) xtitle(") ytitle("") legend(lab&l ™)
label(2 "KS hazard") label(3 "Weibull") label(4 "®3)") ring(0) pos(10) col(1)) name(gl, replace)

I/l Figure 5.11 //
stpm2 agec i.sex, scale(hazard) df(3)

predict rmstm10, rmst tmax(10) at(sex 1)
predict rmstf10, rmst tmax(10) at(sex 2)
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line rmstm10 rmstfl0 agebegin02, sort Ipattern(l ") Iwidth(medthick ..) legend(off) ytitle("Mean
Survival Time") xtitle("Age in 2002") xlabel(65 (595) xscale(r(66 96)) yla(, angle(h) format(%5.1f))
name(gl,replace)

predict rmstm20, rmst tmax(20) at(sex 1)

predict rmstf20, rmst tmax(20) at(sex 2)

line rmstm20 rmstf20 agebegin02, sort Ipattern(l ") Iwidth(medthick ..) legend(off) ytitle("Mean
Survival Time") xtitle("Age in 2002") xlabel(65 (595) xscale(r(66 96)) yla(, angle(h) format(%5.1f))
name(g2,replace)

predict rmstm30, rmst tmax(30) at(sex 1)

predict rmstf30, rmst tmax(30) at(sex 2)

line rmstm30 rmstf30 agebegin02, sort Ipattern(l ") Iwidth(medthick ..) legend(off) ytitle("Mean
Survival Time") xtitle("Age in 2002") xlabel(65 (595) xscale(r(66 96)) yla(, angle(h) format(%5.1f))
name(g3,replace)

predict rmstm40, rmst tmax(40) at(sex 1)

predict rmstf40, rmst tmax(40) at(sex 2)

line rmstm40 rmstf40 agebegin02, sort Ipattern(l ") Iwidth(medthick ..) legend(off) ytitle("Mean
Survival Time") xtitle("Age in 2002") xlabel(65 (595) xscale(r(66 96)) yla(, angle(h) format(%5.1f))
name(g4,replace)

graph combine g1 g2 g3 g4, b2title("Age")

/I Figure 5.12 //

clear

use "C:\Users\siggigusti\Dropbox\Master\Stata\daita?, clear
destring, replace

/I Set dependent variable and censor variable //

stset fu02y, failure(death==1)

stpm2 agec i.sex, scale(hazard) df(3)
predict rmstm, rmst tmax(50) at(sex 1) ci
predict rmstf, rmst tmax(50) at(sex 2) ci

generate hagm =.

replace hagm = 17 if agebegin02==66
replace hagm = 16.2 if agebegin02==67
replace hagm = 15.5 if agebegin02==68
replace hagm = 14.7 if agebegin02==69
replace hagm = 14 if agebegin02==70
replace hagm = 13.3 if agebegin02==71
replace hagm = 12.5 if agebegin02==72
replace hagm = 11.9 if agebegin02==73
replace hagm = 11.2 if agebegin02==74
replace hagm = 10.6 if agebegin02==75
replace hagm = 10 if agebegin02==76
replace hagm = 9.4 if agebeqin02==77
replace hagm = 8.9 if agebegin02==78
replace hagm = 8.3 if agebegin02==79
replace hagm = 7.7 if agebegin02==80
replace hagm = 7.3 if agebegin02==81
replace hagm = 6.8 if agebegin02==82
replace hagm = 6.3 if agebegin02==83
replace hagm = 5.9 if agebegin02==84
replace hagm = 5.5 if agebegin02==85
replace hagm = 5.1 if agebegin02==86
replace hagm = 4.6 if agebegin02==87
replace hagm = 4.3 if agebegin02==88
replace hagm = 4 if agebegin02==89
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replace hagm = 3.7 if agebegin02==90
replace hagm = 3.4 if agebegin02==91
replace hagm = 3 if agebegin02==92

replace hagm = 2.9 if agebegin02==93
replace hagm = 2.7 if agebegin02==94

generate hagf = .

replace hagf = 19.8 if agebegin02==66
replace hagf = 18.9 if agebegin02==67
replace hagf = 18.1 if agebegin02==68
replace hagf = 17.3 if agebegin02==69
replace hagf = 16.5 if agebegin02==70
replace hagf = 15.7 if agebegin02==71
replace hagf = 14.9 if agebegin02==72
replace hagf = 14.2 if agebegin02==73
replace hagf = 13.5 if agebegin02==74
replace hagf = 12.8 if agebegin02==75
replace hagf = 12 if agebegin02==76
replace hagf = 11.3 if agebegin02==77
replace hagf = 10.5 if agebegin02==78
replace hagf = 9.9 if agebegin02==79
replace hagf = 9.2 if agebegin02==80
replace hagf = 8.7 if agebegin02==81
replace hagf = 8.1 if agebegin02==82
replace hagf = 7.5 if agebegin02==83
replace hagf = 7 if agebegin02==84
replace hagf = 6.5 if agebegin02==85
replace hagf = 6 if agebegin02==86
replace hagf = 5.6 if agebegin02==87
replace hagf = 5.2 if agebegin02==88
replace hagf = 4.8 if agebegin02==89
replace hagf = 4.5 if agebegin02==90
replace hagf = 4.1 if agebegin02==91
replace hagf = 3.9 if agebegin02==92
replace hagf = 3.6 if agebegin02==93
replace hagf = 3.3 if agebegin02==94

I Plot /1

twoway(rarea rmstm_Ici rmstm_uci agebegin02, pétjesort) line rmstm hagm agebegin02, sort
Ipattern(l *_ _.) Iwidth(medthick ..) legend(lakkl(") label(2 "PH(3)") label(3 "Statistics Icelanding(0)
pos(1) col(1)) ytitle("Mean Survival Time") xtitlehge") t2title("Male") ylabel(0 (5) 30) xlabel(6%] 95)
xscale(r(66 96)) yla(, angle(h) format(%5.1f)) ndgigreplace)

twoway(rarea rmstf_Ici rmstf_uci agebegin02, pggilesort) line rmstf hagf agebegin02, sort Ipatfer_
_.) lwidth(medthick ..) legend(label(1 ™) label (PH(3)") label(3 "Statistics Iceland") ring(0) {&3
col(1)) ytitle("Mean Survival Time") xtitle("Age"}2title("Female™) ylabel(0 (5) 30) xlabel(65 (5) )95
xscale(r(66 96)) yla(, angle(h) format(%5.1f)) ngg#replace)

graph combine gl g2, b2title("™)

I/l Figure 5.13 //
stpm2 agec i.sex, scale(hazard) df(3)

predict rmstm20, rmst tmax(20) at(sex 1) ci
predict rmstf20, rmst tmax(20) at(sex 2) ci

predict rmstm25, rmst tmax(25) at(sex 1) ci
predict rmstf25, rmst tmax(25) at(sex 2) ci

predict rmstm30, rmst tmax(30) at(sex 1) ci
predict rmstf30, rmst tmax(30) at(sex 2) ci

I Plot //
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line rmstm20 rmstm25 rmstm30 hagm agebegin02,Igattern(l ~_ _.) lwidth(medthick ..) legend(lakkl(
"20 years") label(2 "25 years") label(3 "30 yeartabel(4 "Statistics Iceland") ring(0) pos(1) c9)(1
ytitle("Mean Survival Time") xtitle("Age") t2titleMale") ylabel(0 (5) 25) xlabel(65 (5) 95) xscal@®
96)) yla(, angle(h) format(%5.1f)) name(g3,replace)

line rmstf20 rmstf25 rmstf30 hagf agebegin02, oattern(l *_ _.) lwidth(medthick ..) legend(lakkl{20
years") label(2 "25 years") label(3 "30 years") diy "Statistics Iceland") ring(0) pos(1) col(1))
ytitle("Mean Survival Time") xtitle("Age") t2titleFemale") ylabel(0 (5) 25) xlabel(65 (5) 95) xs¢&&6
96)) yla(, angle(h) format(%5.1f)) name(g4,replace)

graph combine g3 g4, b2title("™)

/I Figures B.1-B.3 //

[/ Hazard(3) //

stpm2 i.sex, scale(hazard) df(3) eform
predict H, cumhazard if(sex==1)
predict S, survival if(sex==1)

predict h, hazard if(sex==1)

/I Weibull //

stpm2 i.sex, scale(hazard) df(1) eform
predict HW, cumhazard if(sex==1)
predict SW, survival if(sex==1)
predict hW, hazard if(sex==1)

/IKM Survival//

sts generate ss=s if(sex==1)

sts generate sse=se(s) if(sex==1)

generate lo = ss - 1.96*sse

generate hi = ss + 1.96*sse

/INA Cumhazard//

sts generate hh=na if(sex==1)

sts generate hhse=se(na) if(sex==1)

generate lohh = hh - 1.96*hhse

generate hihh = hh + 1.96*hhse

/IKS Hazard//

drop if(sex==2)

sts graph, hazard ci kernel(epan?2) outfile(hazacs)
append using "C:\Users\siggigusti\Dropbox\Master\thta"
generate loh=hazard-1.96*sqrt(Vhazard)
generate hih=hazard+1.96*sqrt(Vhazard)

/IPlots//

twoway(rarea lo hi _t, pstyle(ci) sort) line ss SN t, sort Ipattern(l *_ _.) lwidth(medthick ..gknd(label
(1 "95% CI") label(2 "KM") label(3 "Weibull") labé# "PH(3)") ring(0) pos(1) col(1)) ytitle("Survival
function") xtitle("Years of follow-up") xlabel(0 (212) xscale(r(0 12)) yla(, angle(h) format(%5.1f))
name(g2,replace)

twoway(rarea loh hih _t, pstyle(ci) sort) line hezdW h _t, sort Ipattern(l "_ _.) Iwidth(medthicR
legend(label (1 "95% CI") label(2 "KS Hazard") 1&8¢"Weibull") label(4 "PH(3)") ring(0) pos(10) cd))
ytitle("Hazard function”) xtitle("Years of followql') xlabel(0 (2) 12) xscale(r(0 12)) yla(, angle(h)
format(%?5.2f)) name(g3,replace)

twoway(rarea lohh hihh _t, pstyle(ci) sort) line KW H _t, sort Ipattern(l ~_ _.) Iwidth(medthick) ..
legend(label (1 "95% CI") label(2 "NA") label(3 "Weill") label(4 "PH(3)") ring(0) pos(10) col(1))
ytitle("Cumulative hazard function") xtitle("Yearsf follow-up") xlabel(0 (2) 12) xscale(r(0 12)) yla
angle(h) format(%5.1f)) name(g4,replace)

/I Figures B.4-B.5 //

/[l Hazard(3) //

stpm2 i.sex, scale(hazard) df(3) eform
predict H, cumhazard if(sex==2)
predict S, survival if(sex==2)

predict h, hazard if(sex==2)
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/I Weibull //

stpm2 i.sex, scale(hazard) df(1) eform
predict HW, cumhazard if(sex==2)
predict SW, survival if(sex==2)
predict hW, hazard if(sex==2)

//KM Survivalll

sts generate ss=s if(sex==2)

sts generate sse=se(s) if(sex==2)

generate lo = ss - 1.96*sse

generate hi = ss + 1.96*sse

/INA Cumhazard//

sts generate hh=na if(sex==2)

sts generate hhse=se(na) if(sex==2)

generate lohh = hh - 1.96*hhse

generate hihh = hh + 1.96*hhse

IIKS Hazard//

drop if(sex==1)

sts graph, hazard ci kernel(epan2) outfile(hazacsy)
append using "C:\Users\siggigusti\Dropbox\Mastexr\tiiz"
generate loh=hazard-1.96*sqrt(Vhazard)
generate hih=hazard+1.96*sqrt(Vhazard)

/IPlots//

twoway(rarea lo hi _t, pstyle(ci) sort) line ss SNV t, sort Ipattern(l *_ _.) lwidth(medthick ..gEnd(label
(1 "95% CI") label(2 "KM") label(3 "Weibull") labé# "PH(3)") ring(0) pos(1) col(1)) ytitle("Survival
function") xtitle("Years of follow-up") xlabel(0 (212) xscale(r(0 12)) yla(, angle(h) format(%5.1f))
name(g2,replace)

twoway(rarea loh hih _t, pstyle(ci) sort) line hazdW h _t, sort Ipattern(l ~_ _.) Iwidth(medthicR
legend(label (1 "95% CI") label(2 "KS Hazard") 1§3¢'Weibull") label(4 "PH(3)") ring(0) pos(10) cdl))
ytitle("Hazard function") xtitle("Years of followql') xlabel(0 (2) 12) xscale(r(0 12)) yla(, angle(h)
format(%5.2f)) name(g3,replace)

twoway(rarea lohh hihh _t, pstyle(ci) sort) line W H _t, sort Ipattern(l ~_ _.) Iwidth(medthick) ..
legend(label (1 "95% CI") label(2 "NA") label(3 "Wll") label(4 "PH(3)") ring(0) pos(10) col(1))
ytitle("Cumulative hazard function™) xtitle("Yearsf follow-up") xlabel(0 (2) 12) xscale(r(0 12)) yla
angle(h) format(%5.1f)) name(g4,replace)
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