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Overview

B Subsampling MCMC/HMC
B Optimal Tuning of Subsampling MCMC
B Grouped Control Variates

B Subsampling for Stationary Time Series

B Slides: http://mattiasvillani.com/news
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Large-scale project: many papers and researchers

B Robert Kohn, UNSW Sydney and Matias Quiroz, UTS
Sydney

B Minh-Ngoc Tran, University of Sydney
B Khue-Dung Dang, UNSW Sydney

B Robert Salomone, UNSW Sydney
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The Metropolis-Hastings (MH) algorithm

B Bayesian inference

7(6) o< L(0)p(0)

B Initialize 6 and iterate for k = 1,2, ..., N
Sample 6, ~ g (-|9(k’1)) (the proposal distribution)

Accept 8, with acceptance probability

B ORRTCS TSN Gl L)
ST L D) p(et D) q (6,107 D)

I Costly to evaluate L(6,) when n is large. Big data.
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Naive Subsampling MH

B Estimate log-likelihood ¢(0) from subsample of size m < n

5 n
(0, 1) =—) logp(yil6)
m el
B Unbiased: E,[2(6,u)] = £(6).
B Run Pseudo-marginal MH with L(6,u) = exp <@(9, u))

I Initialize (9(0), u(0)> and iterate for k =1,2,.... N

Sample 6, ~ q (-|9(k_1)) and subsample up ~ p(u)
Accept (9,,, up) with acceptance probability

[ (k—1)
a=min |1 L (0p,up) p(6p) q (9 |9p>
" (G(k—l)' u(i—l)) p(G(k—l)) q (9p|9(k_1))
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Isses with Naive Subsampling MH

B PMMH samples from 7t(8) if [ is unbiased [1]

» Approximate bias correction of exp (@(9 u)) 2]

Theorem: O(m~2n~1) posterior perturbation in TV-norm. [3]

» Unbiased Block-Poisson estimator + Signed PMMH. [4]

B Low V (L (0, u)) crucial for efficient sampling. Stuck.

» Difference estimator and control variates [3, 5]
» Optimal tuning of m [4]

» Block Pseudo-marginal: only refresh part of the subsample.
[6. 7]

B High-dim case: Energy Conserving Subsampling HMC.
Estimate likelihood and Hamiltonian dynamics from same
subsample. [8]
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Logistic spline regression, 81 parameters

B Firm bankruptcy data. n = 4,748,089 firm-year obs.
B Subsample size: m = 1000.
B Computational Time (CT):

» Computing time to obtain the equivalent of an iid draw.
» Balances computational cost and MCMC inefficiency.
» Relative CT (RCT)

# evaluations RCT IF
HMC 110601 x 10° 7691.8  2.20
HMC-ECSp  14.02 x 10° 1 2.20
SG-HMC; 120 x 106 9.49 2.42
SG-HMC, 14 x 10° 100.29 226.75
SGLD 11 x 106 230 649.0

Mattias Villani Subsampling MCMC



Bias - Logistic spline regression, 81 parameters

SG-HMC;  HMC-ECSp

SG-HMC,

SGLD
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The Block-Poisson estimator

W The Block-Poisson estimator of the likelihood L(6): [4, 9]
» For/=1,...,A
m draw &) ~ Pois (1)
m draw X mini-batches of data of size m.
m Compute unbiased mini-batch estimators of £(6)
20D forh=1, .., X,
» Construct likelihood estimate for some constant a € R
at+A Zf,i’") —a
h = —_— .
Hg,wereé/ exp( 1 >H< 1

h=1

M Product form of Lg(6): use Block Pseudo Marginal.

W Unbiased: E (Lg(0)) = L(6) for all 6 € ©.

W Positive: Lg(8) > 0 only if P > 5 for all hand 1,
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Signed HMC-ECS

W For agiven A, V (Lg(6)) is minimized for a = ¢ — A.

W Forcing a to be a lower bound for all @E,f’l) is impractical:
» Usually need to know ¢; for all data points.
» a=/{— A implies that A will be large. Costly!

B Soft lower bound: Set a so Pr(@%"l) >a) ~ 1.
More efficient, but L5(#) < 0 possible.

B Signed HMC-ECS [10]
» Run PMMH on |Lg(6)|p(6) and store s = Sign (Lg(6)).
» Correct for sign using importance sampling

_ 2 pe)st)

T

where 1(0) is a function of the parameters.

Ey/(6)
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Optimal tuning of Sighed HMC-ECS

B Optimal A and m minimizes Computational Time (CT):

IF [(rlig (A, m)]

(2T(A, m) — 1)

Lg

CT(A, m) x mA -

B Optimal A and m balances

The cost of computing Lg , which is O(mA) on average
MH inefficiency, IF
Probability of a positive sign T(A, m) = Pr(Lg > 0).
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Optimal tuning of Sighed HMC-ECS

I We derive analytical expressions for all parts of CT(A, m):

» IF

2
" Clog|ig|

> T(A, m)

(A, m)

M Need to assume a distribution for ?Ef,"l’).
B Approach 1: Normal @E,’,"l) by CLT when m > 20.

B Approach 2: Universal approximator by Mixture of normals.
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Set m = 20 and assume @%"I) ~ Normal by CLT. Optimize A.

Both Pr(Lg > 0) and 0'|2

(A, m) are functions of
og

Lg

V(" (6)) =~} (6)

Estimate 02 (6) from a subsample for some selected 6.

However, numerical experiments tell us that m = 1 is optimal.
- 5(h1) : .

Alternative: Approx ;""" by mixture by matching

characteristic functions. [4]

Mattias Villani Subsampling MCMC



Grouped control variates

B Difference estimator with control variates g;(6)

X 4 n
0(0,u) =} q;(6) +— ) (log p(yil6) — ai(6))
j=1 icu
W q;(0) by quadratic expansion of log p(y;|6) around 6*.
W Problematic when log p(y;|6) is far from quadratic.

M Grouped control variates based on grouping of data points
£00) = £1(0) + ... +£)6,(8) +£16,1+1(0) + .. + L6, 4] 6,/ (8) +

L, (0) Le, ()
Subsample groups, not individual observations.
Bernstein-von Mises: (¢, (6) approach quadratic as |Gx| — co.
Grouped difference estimator [11]

|G| | m

D (6) = ;;1 qc, (0) + 191 ) (fcu,(G) - un,(9)>

m i=1
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Subsampling MCMC for stationary time series

B Covariance function yg(t), T=0,1,... and spectral
density

fo(w) = 27‘[ Z Yo(T) exp(—iwT) for w € (-7, 7).

T=—00

M Discrete Fourier Transform (DFT) of the time series

1 .
J(Wk) = 7 Z Xt eXp(—lwkt)
t=1

at wy € {2tk/nfor k = —[n/2]+1,...,|n/2]}.
B The periodogram

Z(wi) = n~ | J(wi) ]

B Asympotically independent periodogram ordinates

T(wi) " Exp(fo(wi)), k=1,....n
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Subsampling MCMC for stationary time series

B Whittle log-likelihood is a sum

=_y (Iogfg W) +I(w"))

wre fe(CUk)

B Whittle may be biased for small n.

I But subsampling is only relevant for large n.

B Subsampling for stationary time series [11]

» Compute periodogram before MCMC at cost O(nlog n).
» Estimate ¢/ (0) by systematic subsampling of frequencies.

M Extensions:
» Tapering
» Debiased Whittle
» Multidimensional FFT for spatial data.
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ARMA(2,3) for temperature time series

@ Temperature on n = 44001 days in Vancouver.
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I Also ARFIMA example in [11]
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Conclusions

Subsampling to speed up MCMC and HMC.

Block-Poisson is an unbiased and efficient estimator of the
likelihood.

Optimal tuning of Signed HMC-ECS with Block-Poisson
estimator.

Very large speed-ups compared to regular HMC and
state-of-the-art subsampling algorithms.

Grouped control variates
Time series extension: subsample periodogram frequencies.
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