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Overview

� Subsampling MCMC/HMC

� Optimal Tuning of Subsampling MCMC

� Grouped Control Variates

� Subsampling for Stationary Time Series

� Slides: http://mattiasvillani.com/news
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Large-scale project: many papers and researchers

� Robert Kohn, UNSW Sydney and Matias Quiroz, UTS
Sydney

� Minh-Ngoc Tran, University of Sydney

� Khue-Dung Dang, UNSW Sydney

� Robert Salomone, UNSW Sydney
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The Metropolis-Hastings (MH) algorithm

� Bayesian inference

π(θ) ∝ L(θ)p(θ)

� Initialize θ(0) and iterate for k = 1, 2, ...,N

1 Sample θp ∼ q
(
·|θ(k−1)

)
(the proposal distribution)

2 Accept θp with acceptance probability

α = min

1,
L(θp)p(θp)

L(θ(k−1))p(θ(k−1))

q
(

θ(k−1)|θp
)

q
(
θp |θ(k−1)

)


� Costly to evaluate L(θp) when n is large. Big data.
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Naive Subsampling MH

� Estimate log-likelihood `(θ) from subsample of size m� n

ˆ̀(θ,u) =
n

m ∑
i∈u

log p(yi |θ)

� Unbiased: Eu[ ˆ̀(θ,u)] = `(θ).

� Run Pseudo-marginal MH with L̂(θ,u) = exp
(

ˆ̀(θ,u)
)
.

� Initialize
(

θ(0),u(0)
)
and iterate for k = 1, 2, ...,N

1 Sample θp ∼ q
(
·|θ(k−1)

)
and subsample up ∼ p(u)

2 Accept (θp,up) with acceptance probability

α = min

1,
L̂ (θp,up) p(θp)

L̂
(
θ(k−1),u(i−1)

)
p(θ(k−1))

q
(

θ(k−1)|θp
)

q
(
θp |θ(k−1)

)

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Isses with Naive Subsampling MH

� PMMH samples from π(θ) if L̂ is unbiased [1]

I Approximate bias correction of exp
(

ˆ̀(θ,u)
)
[2]

Theorem: O(m−2n−1) posterior perturbation in TV-norm. [3]

I Unbiased Block-Poisson estimator + Signed PMMH. [4]

� Low V
(
L̂ (θ,u)

)
crucial for efficient sampling. Stuck.

I Difference estimator and control variates [3, 5]

I Optimal tuning of m [4]

I Block Pseudo-marginal: only refresh part of the subsample.
[6, 7]

� High-dim case: Energy Conserving Subsampling HMC.
Estimate likelihood and Hamiltonian dynamics from same
subsample. [8]
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Logistic spline regression, 81 parameters

� Firm bankruptcy data. n = 4, 748, 089 firm-year obs.
� Subsample size: m = 1000.
� Computational Time (CT):

I Computing time to obtain the equivalent of an iid draw.
I Balances computational cost and MCMC inefficiency.
I Relative CT (RCT)
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Bias - Logistic spline regression, 81 parameters
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The Block-Poisson estimator

� The Block-Poisson estimator of the likelihood L(θ): [4, 9]
I For l = 1, ...,λ

draw Xl ∼ Pois (1)
draw Xl mini-batches of data of size m.
Compute unbiased mini-batch estimators of `(θ)

ˆ̀(h,l)
m , for h = 1, ...,Xl

I Construct likelihood estimate for some constant a ∈ R

L̂B (θ) ≡
λ

∏
l=1

ξl where ξl ≡ exp

(
a+ λ

λ

) Xl

∏
h=1

(
ˆ̀(h,l)
m − a

λ

)
.

� Product form of L̂B(θ): use Block Pseudo Marginal.

� Unbiased: E
(
L̂B(θ)

)
= L(θ) for all θ ∈ Θ.

� Positive: L̂B(θ) > 0 only if ˆ̀(h,l)
m > a for all h and l .
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Signed HMC-ECS

� For a given λ, V
(
L̂B(θ)

)
is minimized for a = `− λ.

� Forcing a to be a lower bound for all ˆ̀(h,l)
m is impractical:

I Usually need to know `i for all data points.
I a = `− λ implies that λ will be large. Costly!

� Soft lower bound: Set a so Pr( ˆ̀(h,l)
m ≥ a) ≈ 1.

More efficient, but L̂B(θ) < 0 possible.

� Signed HMC-ECS [10]

I Run PMMH on
∣∣L̂B (θ)∣∣ p(θ) and store s = Sign

(
L̂B (θ)

)
.

I Correct for sign using importance sampling

Êψ(θ) =
∑N

i=1 ψ(θ(i))s(i)

∑N
i=1 s

(i)
.

where ψ(θ) is a function of the parameters.

Mattias Villani Subsampling MCMC



Optimal tuning of Signed HMC-ECS

� Optimal λ and m minimizes Computational Time (CT):

CT(λ,m) ∝ mλ ·
IF
[

σ2
log|L̂B |(λ,m)

]
(2τ(λ,m)− 1)2

� Optimal λ and m balances

1 The cost of computing L̂B , which is O(mλ) on average

2 MH inefficiency, IF

3 Probability of a positive sign τ(λ,m) ≡ Pr(L̂B ≥ 0).
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Optimal tuning of Signed HMC-ECS

� We derive analytical expressions for all parts of CT(λ,m):

I IF
I σ2

log|L̂B |(λ,m)

I τ(λ,m)

� Need to assume a distribution for ˆ̀(h,l)
m .

� Approach 1: Normal ˆ̀(h,l)
m by CLT when m > 20.

� Approach 2: Universal approximator by Mixture of normals.
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Optimal tuning - normal case

� Set m = 20 and assume ˆ̀(h,l)
m ∼ Normal by CLT. Optimize λ.

� Both Pr(L̂B ≥ 0) and σ2
log|L̂B |(λ,m) are functions of

V( ˆ̀(h,l)
m (θ)) =

n2

m
σ2
`i
(θ)

� Estimate σ2
`i
(θ) from a subsample for some selected θ.

� However, numerical experiments tell us that m = 1 is optimal.

� Alternative: Approx ˆ̀(h,l)
m by mixture by matching

characteristic functions. [4]
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Grouped control variates

� Difference estimator with control variates qj (θ)

ˆ̀(θ,u) =
n

∑
j=1

qj (θ) +
n

m ∑
i∈u

(log p(yi |θ)− qi (θ))

� qj (θ) by quadratic expansion of log p(yi |θ) around θ?.
� Problematic when log p(yi |θ) is far from quadratic.

� Grouped control variates based on grouping of data points

`(θ) = `1(θ) + . . . + `|G1|(θ)︸ ︷︷ ︸
`G1 (θ)

+ `|G1|+1(θ) + . . . + `|G1|+|G2|(θ)︸ ︷︷ ︸
`G2 (θ)

+ . . .

� Subsample groups, not individual observations.
� Bernstein-von Mises: `Gk

(θ) approach quadratic as |Gk | → ∞.
� Grouped difference estimator [11]

ˆ̀gr(θ) =
|G|

∑
k=1

qGk
(θ) +

|G|
m

m

∑
i=1

(
`Gui

(θ)− qGui
(θ)
)
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Subsampling MCMC for stationary time series

� Covariance function γθ(τ), τ = 0, 1, . . . and spectral
density

fθ(ω) ≡ 1
2π

∞

∑
τ=−∞

γθ(τ) exp(−iωτ) for ω ∈ (−π,π].

� Discrete Fourier Transform (DFT) of the time series

J(ωk) ≡
1√
2π

n

∑
t=1

Xt exp(−iωkt)

at ωk ∈ {2πk/n for k = −dn/2e+ 1, . . . , bn/2c}.
� The periodogram

I(ωk) = n−1 |J(ωk)|2 .

� Asympotically independent periodogram ordinates

I(ωk)
indep∼ Exp(fθ(ωk)), k = 1, . . . , n
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Subsampling MCMC for stationary time series

� Whittle log-likelihood is a sum

`W (θ) ≡ − ∑
ωk∈Ω

(
log fθ(ωk) +

I(ωk)

fθ(ωk)

)
� Whittle may be biased for small n.

� But subsampling is only relevant for large n.

� Subsampling for stationary time series [11]
I Compute periodogram before MCMC at cost O(n log n).
I Estimate `W (θ) by systematic subsampling of frequencies.

� Extensions:
I Tapering
I Debiased Whittle
I Multidimensional FFT for spatial data.
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ARMA(2,3) for temperature time series

� Temperature on n = 44001 days in Vancouver.

� Also ARFIMA example in [11]
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Conclusions

� Subsampling to speed up MCMC and HMC.

� Block-Poisson is an unbiased and efficient estimator of the
likelihood.

� Optimal tuning of Signed HMC-ECS with Block-Poisson
estimator.

� Very large speed-ups compared to regular HMC and
state-of-the-art subsampling algorithms.

� Grouped control variates

� Time series extension: subsample periodogram frequencies.
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