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The role of (modern) Statistics in Al

Predicting the bankruptcy of firms

Real-time robotic search

Evolution of airline networks

Finding bugs in computer code



THE ROLE OF (MODERN) STATISTICS IN Al

m Artificial Intelligence and Machine Learning is:

- computationally efficient statistical inference using
- flexible models with a focus on

- prediction and

- decision-making under uncertainty using

- large-scale data, often with

- real-time requirements

m Different focus than traditional statistics.

m Statistics at the center of Al, but only if we really embrace it.

m Very important to keep our core:

+ Probability models
- Rigorous statistical inference
+ Proper data analysis



UPDATED STATISTICS EDUCATION

m Master program Statistics and Machine Learning at
Llnkopmg University:
* Machine Learning, 9 hp
+ Advanced Machine Learning, 6 hp
* Bayesian Learning, 6 hp
+ Text Mining, 6 hp
+ Big Data Analytics, 6 hp
+ Computational Statistics, 6 hp
* R programming, 6 hp
* Python, 3 hp
* Deep learning, 3 hp
* Decision theory, 6 hp
+ Statistical Methods, 6 hp
* Probability Theory, 6 hp

m Joint with engineering master Al and Machine Learning.

m Plan for new master courses at Stockholm University:
+ Probabilistic Machine Learning, 7.5 hp
+ Bayesian Learning, 7.5 hp
* R programming, 7.5 hp



PREDICTING THE BANKRUPTCY OF FIRMS

m Quarterly data on all Swedish cooperations 1990-2016.

- Large data: 4.7 million observations
+ binary response (bankruptcy)
-+ 8 covariates: financial ratios and macro variables.

m Logistic regression

1

Pr(y; =1%)= ———
m Linear decision boundaries because of linear predictor x” 5.

m Non-linear logistic: replace x" 3 by nonlinear function f(x).

- Splines
- Deep neural networks



BANKRUPTCY PREDICTION REQUIRES NONLINEAR MODELS
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PREDICTIVE PERFORMANCE (AUC)
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REAL-TIME ROBOTIC SEARCH WITH FLYING DRONES

m Scenario: Terrorist attack in the city of Gamleby ...
m Aim: use flying drones to quickly find injured people.







STRUCTURAL SPATIAL POINT PROCESS

m Log Gaussian Cox Process (LGCP) for number of persons in

ScSs
Ny-(S)|\ ~ Poisson (/ ) A(s)ds)
seS
log A(s) = ax + X, (5) B + &x(s)
~—— ~——
GIS Gaussian process in 2D

m The number of detected persons by a thinned LGCP
Ny(S)|r, \ ~ Poisson (/ r(s)A(s)ds)
S

logr(s) = x/ (s)8,
m Probability of injury

S

w;|q ~ Bernoulli(q(y;)),
logit q(s) = ag + X, (5)B4 + 4(S)
9]



REAL-TIME DECISION MAKING UNDER UNCERTAINTY

m Challenges
1. missing data - point pattern is only partially observed
2. real-time sequential high-dimensional inference
3. real-time decision making under uncertainty
m Solutions
1. Strong priors based on GIS data
2. Warm-started INLA for Bayesian inference
3. Tailored Monte Carlo Tree Search for decisions
m Video: https://www.youtube.com/watch?v=wyDeO5shF5tE

* UAV
o Visited
© Planned search



https://www.youtube.com/watch?v=wyD0O5hF5tE

WE FIND INJURED A LOT FASTER THAN LAWNMOWER
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AIRLINE NETWORK EVOLUTION - TIME 1

Airline 1

Airline 2
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AIRLINE NETWORK EVOLUTION - TIME 2




AIRLINE NETWORK EVOLUTION - TIME 3




AIRLINE NETWORK EVOLUTION - US DATA




AIRLINE NETWORK EVOLUTION

m Aim: Predict the evolution of airline networks over time.
m Data: Quarterly world-wide networks for all airlines.

m Model: Dynamic multi-layered networks driven by latent
processes

Lufthansa

Air-France

British Airways



DYNAMIC NETWORKS DRIVEN BY LATENT VARIABLES

m Static Bernoulli model for adjacency matrix Y
Yuvu(t)|m g Bern(n)
m Dynamic Bernoulli with global latent Gaussian process
Yuv(t)|7(t) ~ Bern (7(t))
Logit [ (t)] = z(t),
Z(t) ~ GaussianProcess
m Dynamic Bernoulli with latent Gaussian processes at nodes
Yuv(t)|7ruv(t) ~ Bern [Wuv(t)]
Logit [muy (t)] = 2(t) — [Ixu(t) — (0[],
Z(t) ~ GaussianProcess

Xu(t) ~ GaussianProcess, u =1, ..., N.
m How to 'scale to large data’? Many airports, many airlines.



Sampled Link Probabilities at Layer 1, Time 1 Sampled Link Probabilities at Layer 1, Time 10 Sampled Link Probabilities at Layer 1, Time 22

Estimated Link Probabilities at Layer 1, Time 1 Estimated Link Probabilities at Layer 1, Time 10 Estimated Link Probabilities at Layer 1, Time 22




Simulated Adjacency Matrix at Layer 1, Time 1 Simulated Adjacency Matrix at Layer 1, Time 9 Simulated Adjacency Matrix at Layer 1, Time 18

Simulated Adjacency Matrix at Layer 2, Time 1 Simulated Adjacency Matrix at Layer 2, Time 9 Simulated Adjacency Matrix at Layer 2, Time 18




PREDICTING BUG LOCATION FROM BUG REPORTS

def Network(networkInputs) :

CODE
# MORE CODE
# T00 MUCH CODE

return(networkOutputs)

def UI(ULinputs) :

# CODE
# MORE CODE
# T00 MUCH CODE

return(UOutputs)

def Database(DBinputs):

# CODE

# MORE CODE

# T00 MUCH CODE
return(DBOUtputs)

ul Database




DATA

Dataset No. Bug reports No. classes Vocabulary size

Mozilla 15,000 118 3505
Eclipse 15,000 49 3367
Telecom 9,778 26 5286




SUMMARIZE A BUG REPORT WITH TOPIC MODELS

m Summarize a collection of text documents into topics
m Probabilistic model

E Inputs:

- a large collection of text documents.

+ Number of topics, K.

m Outputs:

- a set of K topics that the documents talks about.

+ a numeric vector for each document with K topic proportions.



ToPICS

Topic Topic label Top 10 words in topic

11 HTTP proxy server http network connec-
tion request connect error www
host

27 Layout div style px background color bor-
der css width height element html

28 Connection http cache accept en public local-

Headers host gmt max modified alive

55 Search search google bar results box type
find engine enter text

82 Scrolling scroll page scrolling mouse scroll-
bar bar left bottom click content




TOPIC PROPORTIONS

Topic proportions - Report 12
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THE EFFECT OF TOPICS ON THE CLASSES

m Topic proportions are used as covariates in multinomial
regression.

B Siopic,class 1S the effect of topic on class.

m Horseshoe shrinkage prior on SBiqpic class t0 SOrt out
important topics for each class.
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INTERPRETABLE PREDICTIONS

m DOLDA - Diagonal Orthant Latent Dirichlet Allocation.
Supervised. Topics are directly related to classes.

m System:
- | am very certain that the bug is in Ul code

- because report talks a lot about Uldesign and Scroll and
very little about NetConnect.

- Sending the bug report to the Ul-team.

m System:
- | am very uncertain where the bug is
- because bug report contains a jumble of topics.
- Don't trust me. Please ask human.



INTERPRETABLE PREDICTION WITHOUT LOSS OF ACCU-

RACY

Dataset # Classes DOLDA StackingLDA
Mozilla 118 45% 39%
Eclipse 49 61% 55%
Telecom 26 71% 75%




