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The role of (modern) Statistics in AI

Artificial Intelligence and Machine Learning is:
• computationally efficient statistical inference using
• flexible models with a focus on
• prediction and
• decision-making under uncertainty using
• large-scale data, often with
• real-time requirements

Different focus than traditional statistics.

Statistics at the center of AI, but only if we really embrace it.

Very important to keep our core:
• Probability models
• Rigorous statistical inference
• Proper data analysis
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Updated Statistics education

Master program Statistics and Machine Learning at
Linköping University:

• Machine Learning, 9 hp
• Advanced Machine Learning, 6 hp
• Bayesian Learning, 6 hp
• Text Mining, 6 hp
• Big Data Analytics, 6 hp
• Computational Statistics, 6 hp
• R programming, 6 hp
• Python, 3 hp
• Deep learning, 3 hp
• Decision theory, 6 hp
• Statistical Methods, 6 hp
• Probability Theory, 6 hp

Joint with engineering master AI and Machine Learning.
Plan for new master courses at Stockholm University:

• Probabilistic Machine Learning, 7.5 hp
• Bayesian Learning, 7.5 hp
• R programming, 7.5 hp
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Predicting the bankruptcy of firms

Quarterly data on all Swedish cooperations 1990-2016.
• Large data: 4.7 million observations
• binary response (bankruptcy)
• 8 covariates: financial ratios and macro variables.

Logistic regression

Pr(yi = 1|xi) =
1

1+ exp(−xTi β)
.

Linear decision boundaries because of linear predictor xTβ.

Non-linear logistic: replace xTβ by nonlinear function f (x).
• Splines
• Deep neural networks
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Bankruptcy prediction requires nonlinearmodels
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Predictive performance (AUC)
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Real-time robotic search with flying drones

Scenario: Terrorist attack in the city of Gamleby ...
Aim: use flying drones to quickly find injured people.
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Real-time robotic search with flying drones
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Structural Spatial Point Process

Log Gaussian Cox Process (LGCP) for number of persons in
S̃ ⊂ S

Ny?(S̃)|λ ∼ Poisson
(∫

s∈S̃
λ(s)ds

)
logλ(s) = αλ + x>λ (s)︸ ︷︷ ︸βλ

GIS

+ ξλ(s)︸ ︷︷ ︸
Gaussian process in 2D

The number of detected persons by a thinned LGCP

Ny(S̃)|r, λ ∼ Poisson
(∫

s∈S̃
r(s)λ(s)ds

)
log r(s) = x>r (s)βr

Probability of injury

wi|q ∼ Bernoulli (q(yi)) ,
logitq(s) = αq + x>q (s)βq + ξq(s)
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Real-time decision making under uncertainty

Challenges
1. missing data - point pattern is only partially observed
2. real-time sequential high-dimensional inference
3. real-time decision making under uncertainty

Solutions
1. Strong priors based on GIS data
2. Warm-started INLA for Bayesian inference
3. Tailored Monte Carlo Tree Search for decisions

Video: https://www.youtube.com/watch?v=wyD0O5hF5tE
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We find injured a lot faster than lawnmower

Lawnmower
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Airline network evolution - time 1
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Airline network evolution - time 2
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Airline network evolution - time 3
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Airline network evolution - US data
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Airline network evolution

Aim: Predict the evolution of airline networks over time.
Data: Quarterly world-wide networks for all airlines.
Model: Dynamic multi-layered networks driven by latent
processes
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Dynamic networks driven by latent variables

Static Bernoulli model for adjacency matrix Y

Yuv(t)|π
iid∼ Bern(π)

Dynamic Bernoulli with global latent Gaussian process
Yuv(t)|π(t) ∼ Bern (π(t))
Logit [π(t)] = z(t),

z(t) ∼ GaussianProcess

Dynamic Bernoulli with latent Gaussian processes at nodes
Yuv(t)|πuv(t) ∼ Bern [πuv(t)]
Logit [πuv(t)] = z(t)− ‖xu(t)− xv(t)‖ ,

z(t) ∼ GaussianProcess
xu(t) ∼ GaussianProcess, u = 1, ...,N.

How to ’scale to large data’? Many airports, many airlines.
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Learning a dynamic multi-layer networks

18 27



Block-structured multi-layer networks
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Predicting bug location from bug reports
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Data

Dataset No. Bug reports No. classes Vocabulary size
Mozilla 15,000 118 3505
Eclipse 15,000 49 3367
Telecom 9,778 26 5286
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Summarize a bug report with topic models

Summarize a collection of text documents into topics

Probabilistic model

Inputs:
• a large collection of text documents.
• Number of topics, K.

Outputs:
• a set of K topics that the documents talks about.
• a numeric vector for each document with K topic proportions.
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Topics

Topic Topic label Top 10 words in topic
11 HTTP proxy server http network connec-

tion request connect error www
host

27 Layout div style px background color bor-
der css width height element html

28 Connection
Headers

http cache accept en public local-
host gmt max modified alive

55 Search search google bar results box type
find engine enter text

82 Scrolling scroll page scrolling mouse scroll-
bar bar left bottom click content

TABLE 1: Top words for signal topics (Z11, Z27, Z28, Z55
and Z82) for the class Core.Networking from the Mozilla
dataset. The topic label is manually assigned.

is split in two main scenarios, accepted and rejected predic-
tions.

In our approach, a bug report is encoded as a set of
variables. Each variable represents an aspect of the bug report.
For instance, one variable can represent which Version of
the software the bug was reported on. Another variable can
represent at which Site the bug was discovered.

We represent the text of a bug report as the vector of
proportions of topics extracted by LDA that are represented in
the report. Each topic proportion is encoded as one variable.
If we have selected 40 topics, then the text in the bug report
will be represented by 40 variables.
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Fig. 1: � coefficients for the Core.Networking component. The
Core.Networking component has five signal variables, Z11,
Z27, Z28, Z55 and Z82 which represents topics 11, 27, 28,
55 and 82.

Each component in the system that the system can classify
to has a set of weights associated to it. The weights are called �
coefficients. The � coefficients, the topics and the topic distri-
bution of the bug reports are learned by the system during the
training phase and can later be used for predictions of new bug
reports. There is one � coefficient per variable in the bug report
encoding. The value of the � coefficients of one component
represents the importance of its corresponding variable when
classifying a bug report to that specific component. Figure 1
shows a plot of the � coefficients for the Mozilla component
Core.Networking. The � coefficients for topics 11, 27 and 28

are annotated in the figure. The topics are encoded as variables
named ”Z” appended with the topic number.

We call a variable a signal variable for a component if its
corresponding � coefficient has a value that lies more than two
standard deviations (SD) away from the � coefficients mean.
Signal variables are marked with a vertical line and its name
printed on the X-axis. Signal variables are particularly impor-
tant and serve as characteristic variables for a component.

2.1. Quantification of Uncertainty

The Bayesian approach gives us a so called posterior pre-
dictive distribution over the predicted classes. This distribution
quantifies the uncertainty in the model predictions over the
classes. In our context, the classes represent the different
components of the system. Figure 2 shows an example of a
prediction with very low uncertainty. The model predicts, with
high confidence, that component 12 contains the fault indicated
by bug report HP19611. Sometimes, for convenience, we also
talk about precision which is the inverse of uncertainty. Be-
cause of the low uncertainty (high precision) case in Figure 2,
we would accept the prediction and automatically suggest that
the bug is located in the predicted component.
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Fig. 2: Probability distribution over the classes with very low
uncertainty.

In Figure 3 in contrast, we see that for bug report HP32309
the uncertainty is comparatively high (notice the range differ-
ence on the y-axis compared to Figure 2). If the system was
tuned not to accept too high uncertainty in the prediction, it
would reject this prediction and leave the decision up to a
human.
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Fig. 3: Probability distribution over the classes with compar-
atively high uncertainty.
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Topic proportions
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The effect of topics on the classes

Topic proportions are used as covariates in multinomial
regression.
βtopic,class is the effect of topic on class.
Horseshoe shrinkage prior on βtopic,class to sort out
important topics for each class.

Topic Topic label Top 10 words in topic
11 HTTP proxy server http network connec-

tion request connect error www
host

27 Layout div style px background color bor-
der css width height element html

28 Connection
Headers

http cache accept en public local-
host gmt max modified alive

55 Search search google bar results box type
find engine enter text

82 Scrolling scroll page scrolling mouse scroll-
bar bar left bottom click content

TABLE 1: Top words for signal topics (Z11, Z27, Z28, Z55
and Z82) for the class Core.Networking from the Mozilla
dataset. The topic label is manually assigned.

is split in two main scenarios, accepted and rejected predic-
tions.

In our approach, a bug report is encoded as a set of
variables. Each variable represents an aspect of the bug report.
For instance, one variable can represent which Version of
the software the bug was reported on. Another variable can
represent at which Site the bug was discovered.

We represent the text of a bug report as the vector of
proportions of topics extracted by LDA that are represented in
the report. Each topic proportion is encoded as one variable.
If we have selected 40 topics, then the text in the bug report
will be represented by 40 variables.

−20

−10

0

10

20

Z11 Z27Z28 Z55 Z82

Variable

Va
lu

e

Betas Core.Networking

Topic&11&

Topic&27&

Topic&28&

Fig. 1: � coefficients for the Core.Networking component. The
Core.Networking component has five signal variables, Z11,
Z27, Z28, Z55 and Z82 which represents topics 11, 27, 28,
55 and 82.

Each component in the system that the system can classify
to has a set of weights associated to it. The weights are called �
coefficients. The � coefficients, the topics and the topic distri-
bution of the bug reports are learned by the system during the
training phase and can later be used for predictions of new bug
reports. There is one � coefficient per variable in the bug report
encoding. The value of the � coefficients of one component
represents the importance of its corresponding variable when
classifying a bug report to that specific component. Figure 1
shows a plot of the � coefficients for the Mozilla component
Core.Networking. The � coefficients for topics 11, 27 and 28

are annotated in the figure. The topics are encoded as variables
named ”Z” appended with the topic number.

We call a variable a signal variable for a component if its
corresponding � coefficient has a value that lies more than two
standard deviations (SD) away from the � coefficients mean.
Signal variables are marked with a vertical line and its name
printed on the X-axis. Signal variables are particularly impor-
tant and serve as characteristic variables for a component.

2.1. Quantification of Uncertainty

The Bayesian approach gives us a so called posterior pre-
dictive distribution over the predicted classes. This distribution
quantifies the uncertainty in the model predictions over the
classes. In our context, the classes represent the different
components of the system. Figure 2 shows an example of a
prediction with very low uncertainty. The model predicts, with
high confidence, that component 12 contains the fault indicated
by bug report HP19611. Sometimes, for convenience, we also
talk about precision which is the inverse of uncertainty. Be-
cause of the low uncertainty (high precision) case in Figure 2,
we would accept the prediction and automatically suggest that
the bug is located in the predicted component.
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Fig. 2: Probability distribution over the classes with very low
uncertainty.

In Figure 3 in contrast, we see that for bug report HP32309
the uncertainty is comparatively high (notice the range differ-
ence on the y-axis compared to Figure 2). If the system was
tuned not to accept too high uncertainty in the prediction, it
would reject this prediction and leave the decision up to a
human.
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Fig. 3: Probability distribution over the classes with compar-
atively high uncertainty.
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Interpretable predictions

DOLDA - Diagonal Orthant Latent Dirichlet Allocation.
Supervised. Topics are directly related to classes.

System:
- I am very certain that the bug is in UI code
- because report talks a lot about UIdesign and Scroll and
very little about NetConnect.
- Sending the bug report to the UI-team.

System:
- I am very uncertain where the bug is
- because bug report contains a jumble of topics.
- Don’t trust me. Please ask human.
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Interpretable prediction without loss of accu-
racy

Dataset # Classes DOLDA StackingLDA
Mozilla 118 45% 39%
Eclipse 49 61% 55%
Telecom 26 71% 75%
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