BAYESIAN PREDICTION AND DECISION MAKING PIZZA AND BEER TALK AT IZETTLE Lecture 4: Predictions. Decisions.

MATTIAS VILLANI

DEPARTMENT OF STATISTICS STOCKHOLM UNIVERSITY AND DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE LINKÖPING UNIVERSITY

- A two slide intro to Bayesian Learning
- Bayesian Prediction
- Bayesian Decision Making

UNCERTAINTY AND SUBJECTIVE PROBABILITY

- What we really want: Pr(unknown|known)
 - $\Pr(\theta | \text{data})$
 - Pr(test data|training data)
- $Pr(\theta < 0.6 | data)$ only makes sense if θ is random.
- **But** θ may be a fixed natural constant?
- **Bayesian:** doesn't matter if θ is fixed or random.
- **Do You** know the value of θ or not?
- $p(\theta)$ reflects Your knowledge/**uncertainty** about θ .
- Subjective probability.
- The statement Pr(10th decimal of $\pi = 9) = 0.1$ makes sense.

BAYESIAN LEARNING

Bayesian learning combines:

- prior information $p(\theta)$ with
- data information $p(Data|\theta)$ (likelihood function)
- using Bayes theorem

$$p(\theta|\text{Data}) = \frac{p(\text{Data}|\theta)p(\theta)}{p(\text{Data})} \propto p(\text{Data}|\theta)p(\theta)$$

Posterior \propto Likelihood \cdot Prior

PREDICTION/FORECASTING

■ Posterior predictive density for future \tilde{y} given observed y $p(\tilde{y}|\mathbf{y}) = \int_{\theta} p(\tilde{y}|\theta, \mathbf{y}) p(\theta|\mathbf{y}) d\theta$

■ If $p(\tilde{y}|\theta, \mathbf{y}) = p(\tilde{y}|\theta)$ [not true for time series], then

$$p(\tilde{y}|\mathbf{y}) = \int_{\theta} p(\tilde{y}|\theta) p(\theta|\mathbf{y}) d\theta$$

- **Parameter uncertainty** in $p(\tilde{y}|\mathbf{y})$ by averaging over $p(\theta|\mathbf{y})$.
- **Simulation** implementation:
 - Simulate from posterior $\theta^{(i)} \sim p(\theta|\mathbf{y})$
 - Simulate $\tilde{y}^{(i)} \sim p(y|\theta^{(i)})$ from model

Autoregressive process

$$y_t = \mu + \phi_1(y_{t-1} - \mu) + \dots + \phi_p(y_{t-p} - \mu) + \varepsilon_t, \ \varepsilon_t \stackrel{iid}{\sim} N(O, \sigma^2)$$

Simulation algorithm. Repeat N times:

- 1. Generate a **posterior draw** of $\theta^{(1)} = (\phi_1^{(1)}, ..., \phi_p^{(1)}, \mu^{(1)}, \sigma^{(1)})$ from $p(\phi_1, ..., \phi_p, \mu, \sigma | \mathbf{y}_{1:T})$.
- 2. Generate a predictive draw of future time series by:

2.1
$$\tilde{y}_{T+1} \sim p(y_{T+1}|y_T, y_{T-1}, ..., y_{T-p}, \theta^{(1)})$$

2.2 $\tilde{y}_{T+2} \sim p(y_{T+2}|\tilde{y}_{T+1}, y_T, ..., y_{T-p}, \theta^{(1)})$
2.3 $\tilde{y}_{T+3} \sim p(y_{T+3}|\tilde{y}_{T+2}, \tilde{y}_{T+1}, y_T, ..., y_{T-p}, \theta^{(1)})$
2.4 ...

BINARY CLASSIFICATION

- Response is assumed to be **binary** (y = 0 or 1).
- Example: Spam/Ham. Covariates: \$-symbols, etc.
- Logistic regression

$$\Pr(y_i = 1 \mid x_i) = \frac{\exp(\mathbf{x}_i'\beta)}{1 + \exp(\mathbf{x}_i'\beta)}$$

■ Multi-class (*c* = 1, 2, ..., *C*) logistic regression

$$\Pr(y_i = c \mid x_i) = \frac{\exp(\mathbf{x}'_i \beta_c)}{\sum_{k=1}^{C} \exp(\mathbf{x}'_i \beta_k)}$$

Likelihood logistic regression

$$p(\mathbf{y}|\mathbf{X},\beta) = \prod_{i=1}^{n} \frac{[\exp(\mathbf{x}_{i}^{\prime}\beta)]^{y_{i}}}{1 + \exp(\mathbf{x}_{i}^{\prime}\beta)}.$$

Posterior is non-standard. What to do?

Normal approximation

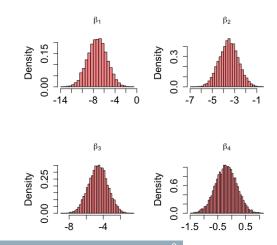
- Use $\theta \sim^{approx} N(\hat{\theta}, \Omega)$
- $\hat{\beta}$ is the mode of the posterior
- $\Omega = -H^{-1}$, where *H* is the Hessian matrix at the mode

$$\Omega = -\frac{\partial^2 \ln p(\boldsymbol{\theta}|\mathbf{y})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^T}|_{\boldsymbol{\theta} = \tilde{\boldsymbol{\theta}}}.$$

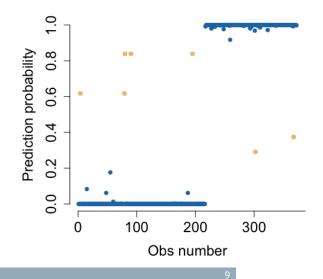
- Theory: the posterior will be $N(\hat{\theta}, \Omega)$ is large datasets.
- Both $\hat{\theta}$ and H can be obtained with **numerical optimization**.
- Only need to code $\log p(\mathbf{y}|\theta) + \log p(\theta)$
- Markov Chain Monte Carlo (MCMC) or Hamiltonian MC (HMC).
- Variational inference: use optimization to find a simpler distribution $q(\theta)$ that minimizes the (Kullback-Leibler) distance between $q(\theta)$ and $p(\theta|\mathbf{y})$.

POSTERIOR - FRAUD DATA

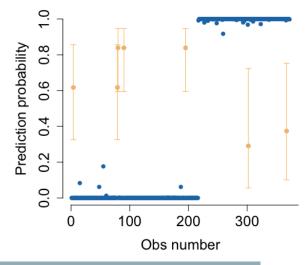
- Predicting fraudulent bills from 4 image features.
- Logistic regression.
- nTrain = 1000, Test = 372.



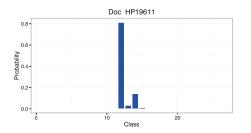
THE ASK-A-HUMAN OPTION - FRAUD

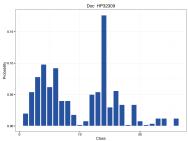


THE ASK-A-HUMAN OPTION - FRAUD



THE ASK-A-HUMAN OPTION - BUG ALLOCATION





DECISION THEORY

- Let θ be an unknown quantity. State of nature. Examples: Future inflation, Global temperature, Fraud.
- Let $a \in A$ be an **action**. Ex: Interest rate, Energy tax, Surgery.
- Choosing action *a* when state of nature is θ gives **utility**

 $U(a, \theta)$

■ Alternatively loss $L(a, \theta) = -U(a, \theta)$.

		θ_1	θ_2	
Loss table:	a ₁	$\begin{array}{c} L(a_1, \theta_1) & L(a_1, \theta_2) \\ L(a_2, \theta_1) & L(a_2, \theta_2) \end{array}$		$\theta_2)$
	<i>a</i> ₂	$L(a_2, \theta_1) L(a_2, \theta_2)$		
			Rainy	Sunny
Example:	Umbrella		20	10
	No umbrella		50	0

Example:

- + θ is the number of items demanded of a product
- a is the number of items in stock
- Utility

$$U(a, \theta) = \begin{cases} p \cdot \theta - c_1(a - \theta) & \text{if } a > \theta \text{ [too much stock]} \\ p \cdot a - c_2(\theta - a)^2 & \text{if } a \le \theta \text{ [too little stock]} \end{cases}$$

OPTIMAL DECISION

Ad hoc decision rules: *Minimax. Minimax-regret* etc etc ...
 Bayesian theory: maximize the posterior expected utility:

 $a_{bayes} = \operatorname{argmax}_{a \in \mathcal{A}} E_{p(\theta|y)}[U(a, \theta)],$

where $E_{p(\theta|y)}$ denotes the posterior expectation.

■ Using simulated draws $\theta^{(1)}, \theta^{(2)}, ..., \theta^{(N)}$ from $p(\theta|y)$:

$$E_{p(\theta|y)}[U(a,\theta)] \approx N^{-1} \sum_{i=1}^{N} U(a,\theta^{(i)})$$

Separation principle:

- 1. First obtain $p(\theta|y)$
- **2.** then form $U(a, \theta)$ and finally
- 3. choose *a* that maximes $E_{p(\theta|y)}[U(a, \theta)]$.