Bayesian Prediction and Decision MAKING
 PIZZA AND BEER TALK AT ZETTLE Lecture 4: PREDICTIONS. DECISIONS.

Mattias Villani

Department of Statistics
Stockholm University
AND
Department of Computer and Information Science LINIKÖPING UNIVERSITY

LECTURE OVERVIEW

- A two slide intro to Bayesian Learning
- Bayesian Prediction

■ Bayesian Decision Making

■ What we really want: Pr (unknown|known)

- $\operatorname{Pr}(\theta \mid$ data $)$
- $\operatorname{Pr}($ test data|training data)

■ $\operatorname{Pr}(\theta<0.6 \mid$ data $)$ only makes sense if θ is random.

- But θ may be a fixed natural constant?

■ Bayesian: doesn't matter if θ is fixed or random.
■ Do You know the value of θ or not?
■ $p(\theta)$ reflects Your knowledge/uncertainty about θ.
■ Subjective probability.
■ The statement $\operatorname{Pr}(10$ th decimal of $\pi=9)=0.1$ makes sense.

BAYESIAN LEARNING

■ Bayesian learning combines:

- prior information $p(\theta)$ with
- data information $p($ Data $\mid \theta)$ (likelihood function)
- using Bayes theorem

$$
p(\theta \mid \text { Data })=\frac{p(\text { Data } \mid \theta) p(\theta)}{p(\text { Data })} \propto p(\text { Data } \mid \theta) p(\theta)
$$

Posterior \propto Likelihood . Prior

■ Posterior predictive density for future y given observed \mathbf{y}

$$
p(\tilde{y} \mid \mathbf{y})=\int_{\theta} p(\tilde{y} \mid \theta, \mathbf{y}) p(\theta \mid \mathbf{y}) d \theta
$$

■ If $p(\tilde{y} \mid \theta, \mathbf{y})=p(\tilde{y} \mid \theta)$ [not true for time series], then

$$
p(\tilde{y} \mid \mathbf{y})=\int_{\theta} p(\tilde{y} \mid \theta) p(\theta \mid \mathbf{y}) d \theta
$$

■ Parameter uncertainty in $p(\tilde{y} \mid \mathbf{y})$ by averaging over $p(\theta \mid \mathbf{y})$.
■ Simulation implementation:

- Simulate from posterior $\theta^{(i)} \sim p(\theta \mid \mathbf{y})$
- Simulate $\tilde{y}^{(i)} \sim p\left(y \mid \theta^{(i)}\right)$ from model

EXAMPLE: BAYESIAN PREDICTION FOR TIME SERIES

■ Autoregressive process

$$
y_{t}=\mu+\phi_{1}\left(y_{t-1}-\mu\right)+\ldots+\phi_{p}\left(y_{t-p}-\mu\right)+\varepsilon_{t}, \varepsilon_{t} \stackrel{i i d}{\sim} N\left(\mathbf{o}, \sigma^{2}\right)
$$

Simulation algorithm. Repeat N times:

1. Generate a posterior draw of $\theta^{(1)}=\left(\phi_{1}^{(1)}, \ldots, \phi_{p}^{(1)}, \mu^{(1)}, \sigma^{(1)}\right)$ from $p\left(\phi_{1}, \ldots, \phi_{p}, \mu, \sigma \mid \mathbf{y}_{1: T}\right)$.
2. Generate a predictive draw of future time series by:
$2.1 \tilde{y}_{T+1} \sim p\left(y_{T+1} \mid y_{T}, y_{T-1}, \ldots, y_{T-p}, \theta^{(1)}\right)$
$2.2 \tilde{y}_{T+2} \sim p\left(y_{T+2} \mid \tilde{y}_{T+1}, y_{T}, \ldots, y_{T-p}, \theta^{(1)}\right)$
$2.3 \tilde{y}_{T+3} \sim p\left(y_{T+3} \mid \tilde{y}_{T+2}, \tilde{y}_{T+1}, y_{T}, \ldots, y_{T-p}, \theta^{(1)}\right)$
2.4 ...

BINARY CLASSIFICATION

■ Response is assumed to be binary ($y=0$ or 1).
■ Example: Spam/Ham. Covariates: \$-symbols, etc.
■ Logistic regression

$$
\operatorname{Pr}\left(y_{i}=1 \mid x_{i}\right)=\frac{\exp \left(\mathbf{x}_{i}^{\prime} \beta\right)}{1+\exp \left(\mathbf{x}_{\mathbf{i}}^{\prime} \beta\right)}
$$

■ Multi-class $(c=1,2, \ldots, C)$ logistic regression

$$
\operatorname{Pr}\left(y_{i}=c \mid x_{i}\right)=\frac{\exp \left(\mathbf{x}_{\mathbf{i}}^{\prime} \beta_{c}\right)}{\sum_{k=1}^{C} \exp \left(\mathbf{x}_{i}^{\prime} \beta_{k}\right)}
$$

■ Likelihood logistic regression

$$
p(\mathbf{y} \mid \mathbf{X}, \beta)=\prod_{i=1}^{n} \frac{\left[\exp \left(\mathbf{x}_{i}^{\prime} \beta\right)\right]^{y_{i}}}{1+\exp \left(\mathbf{x}_{i}^{\prime} \beta\right)}
$$

■ Posterior is non-standard. What to do?

APPROXIMATING THE POSTERIOR DISTRIBUTION

■ Normal approximation

- Use $\theta \stackrel{\text { approx }}{\sim} N(\hat{\theta}, \Omega)$
- $\hat{\beta}$ is the mode of the posterior
- $\Omega=-H^{-1}$, where H is the Hessian matrix at the mode

$$
\Omega=-\left.\frac{\partial^{2} \ln p(\theta \mid \mathbf{y})}{\partial \theta \partial \theta^{T}}\right|_{\theta=\tilde{\theta}} .
$$

- Theory: the posterior will be $N(\hat{\theta}, \Omega)$ is large datasets.
- Both $\hat{\theta}$ and H can be obtained with numerical optimization.
- Only need to code $\log p(\mathbf{y} \mid \theta)+\log p(\theta)$

■ Markov Chain Monte Carlo (MCMC) or Hamiltonian MC (HMC).
■ Variational inference: use optimization to find a simpler distribution $q(\theta)$ that minimizes the (Kullback-Leibler) distance between $q(\theta)$ and $p(\theta \mid \mathbf{y})$.

■ Predicting fraudulent bills from 4 image features.
■ Logistic regression.
■ nTrain $=1000$, Test $=372$.

THE ASK-A-HUMAN OPTION - BUG ALLOCATION

DECISION THEORY

■ Let θ be an unknown quantity. State of nature. Examples: Future inflation, Global temperature, Fraud.
$■$ Let $a \in \mathcal{A}$ be an action. Ex: Interest rate, Energy tax, Surgery.
■ Choosing action a when state of nature is θ gives utility

$$
U(a, \theta)
$$

■ Alternatively loss $L(a, \theta)=-U(a, \theta)$.

■ Loss table:

	θ_{1}	θ_{2}
a_{1}	$L\left(a_{1}, \theta_{1}\right)$	$L\left(a_{1}, \theta_{2}\right)$
a_{2}	$L\left(a_{2}, \theta_{1}\right)$	$L\left(a_{2}, \theta_{2}\right)$

	Rainy	Sunny
Umbrella	20	10
No umbrella	50	0

Decision Theory, cont.

■ Example:

- θ is the number of items demanded of a product
- a is the number of items in stock
- Utility

$$
U(a, \theta)= \begin{cases}p \cdot \theta-c_{1}(a-\theta) & \text { if } a>\theta[\text { too much stock }] \\ p \cdot a-c_{2}(\theta-a)^{2} & \text { if } a \leq \theta[\text { too little stock }]\end{cases}
$$

OPTIMAL DECISION

■ Ad hoc decision rules: Minimax. Minimax-regret etc etc ...
■ Bayesian theory: maximize the posterior expected utility:

$$
a_{\text {bayes }}=\operatorname{argmax}_{a \in \mathcal{A}} E_{p(\theta \mid y)}[U(a, \theta)],
$$

where $E_{p(\theta \mid y)}$ denotes the posterior expectation.
■ Using simulated draws $\theta^{(1)}, \theta^{(2)}, \ldots, \theta^{(N)}$ from $p(\theta \mid y)$:

$$
E_{p(\theta \mid y)}[U(a, \theta)] \approx N^{-1} \sum_{i=1}^{N} U\left(a, \theta^{(i)}\right)
$$

■ Separation principle:

1. First obtain $p(\theta \mid y)$
2. then form $U(a, \theta)$ and finally
3. choose a that maximes $E_{p(\theta \mid y)}[U(a, \theta)]$.
