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Lecture overview

A two slide intro to Bayesian Learning

Bayesian Prediction

Bayesian Decision Making
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Uncertainty and subjective probability

What we really want: Pr(unknown|known)
• Pr(θ|data)
• Pr(test data|training data)

Pr(θ < 0.6|data) only makes sense if θ is random.
But θ may be a fixed natural constant?
Bayesian: doesn’t matter if θ is fixed or random.
Do You know the value of θ or not?
p(θ) reflects Your knowledge/uncertainty about θ.
Subjective probability.
The statement Pr(10th decimal of π = 9) = 0.1 makes sense.
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Bayesian learning

Bayesian learning combines:
• prior information p(θ) with
• data information p(Data|θ) (likelihood function)
• using Bayes theorem

p(θ|Data) = p(Data|θ)p(θ)
p(Data) ∝ p(Data|θ)p(θ)

Posterior ∝ Likelihood · Prior
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Prediction/Forecasting

Posterior predictive density for future ỹ given observed y

p(ỹ|y) =
∫

θ
p(ỹ|θ, y)p(θ|y)dθ

If p(ỹ|θ, y) = p(ỹ|θ) [not true for time series], then

p(ỹ|y) =
∫

θ
p(ỹ|θ)p(θ|y)dθ

Parameter uncertainty in p(ỹ|y) by averaging over p(θ|y).

Simulation implementation:
• Simulate from posterior θ(i) ∼ p(θ|y)
• Simulate ỹ(i) ∼ p(y|θ(i)) from model
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Example: Bayesian prediction for time series

Autoregressive process

yt = µ + φ1(yt−1 − µ) + ...+ φp(yt−p − µ) + εt, εt
iid∼ N(0, σ2)

Simulation algorithm. Repeat N times:
1. Generate a posterior draw of θ(1) = (φ

(1)
1 , ..., φ

(1)
p , µ(1), σ(1))

from p(φ1, ..., φp, µ, σ|y1:T).

2. Generate a predictive draw of future time series by:
2.1 ỹT+1 ∼p(yT+1|yT , yT−1, ..., yT−p, θ(1))

2.2 ỹT+2 ∼ p(yT+2|ỹT+1, yT , ..., yT−p, θ(1))

2.3 ỹT+3 ∼ p(yT+3|ỹT+2, ỹT+1, yT , ..., yT−p, θ(1))
2.4 ...
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Binary classification

Response is assumed to be binary (y = 0 or 1).
Example: Spam/Ham. Covariates: $-symbols, etc.
Logistic regression

Pr(yi = 1 | xi) =
exp(x′iβ)

1+ exp(x′iβ)

Multi-class (c = 1, 2, ..., C) logistic regression

Pr(yi = c | xi) =
exp(x′iβc)

∑C
k=1 exp(x′iβk)

Likelihood logistic regression

p(y|X, β) = ∏n
i=1

[exp(x′iβ)]
yi

1+ exp(x′iβ)
.

Posterior is non-standard. What to do?
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Approximating the posterior distribution

Normal approximation
• Use θ

approx∼ N(θ̂,Ω)
• β̂ is the mode of the posterior
• Ω = −H−1, where H is the Hessian matrix at the mode

Ω = −∂2 lnp(θ|y)
∂θ∂θT

|θ=θ̃.

• Theory: the posterior will be N(θ̂,Ω) is large datasets.
• Both θ̂ and H can be obtained with numerical optimization.
• Only need to code logp(y|θ) + logp(θ)

Markov Chain Monte Carlo (MCMC) or Hamiltonian MC (HMC).

Variational inference: use optimization to find a simpler
distribution q(θ) that minimizes the (Kullback-Leibler)
distance between q(θ) and p(θ|y).
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Posterior - fraud data

Predicting fraudulent bills from 4 image features.
Logistic regression.
nTrain = 1000, Test = 372.
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The ask-a-human option - fraud
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The ask-a-human option - fraud
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The ask-a-human option - bug allocation
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Decision Theory

Let θ be an unknown quantity. State of nature. Examples:
Future inflation, Global temperature, Fraud.
Let a ∈ A be an action. Ex: Interest rate, Energy tax, Surgery.
Choosing action a when state of nature is θ gives utility

U(a, θ)

Alternatively loss L(a, θ) = −U(a, θ).

Loss table:
θ1 θ2

a1 L(a1, θ1) L(a1, θ2)
a2 L(a2, θ1) L(a2, θ2)

Example:
Rainy Sunny

Umbrella 20 10
No umbrella 50 0
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Decision Theory, cont.

Example:
• θ is the number of items demanded of a product
• a is the number of items in stock
• Utility

U(a, θ) =

{
p · θ − c1(a− θ) if a > θ [too much stock]
p · a− c2(θ − a)2 if a ≤ θ [too little stock]
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Optimal decision

Ad hoc decision rules: Minimax. Minimax-regret etc etc ...
Bayesian theory: maximize the posterior expected utility:

abayes = argmaxa∈A Ep(θ|y)[U(a, θ)],

where Ep(θ|y) denotes the posterior expectation.

Using simulated draws θ(1),θ(2), ..., θ(N) from p(θ|y) :

Ep(θ|y)[U(a, θ)] ≈ N−1
N

∑
i=1
U(a, θ(i))

Separation principle:

1. First obtain p(θ|y)
2. then form U(a, θ) and finally
3. choose a that maximes Ep(θ|y)[U(a, θ)].
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